RESUMO
A serious medical issue reported at the center of media worldwide, Since December, 2019 is the Covid19 pandemic. As declared by World Health Organization, confirmed cases of Covid19 have been 579,893,790 including 6,415,070 deaths as of 29 July 2022. Even new cases reported in last 24 hours are 20,409 in India. This needs to diagnose and timely treatment of Covid-19 is essential to prevent hurdles including death. The author developed deep learning based Covid19 diagnosis and severity prediction models using x-ray images with hope that this technology can increase access to radiology expertise in remote places where availability of expert radiologist is limited. The researchers proposed and implemented Attentive Multi Scale Feature map based deep Network (AMSF-Net) for x- ray image classification with improved accuracy. In binary classification, x-ray images are classified as normal or Covid19. Multiclass classification classifies x-ray images into mild, moderate or severe infection of Covid19. The researchers utilized lower layers features in addition to features from highest level with different scale to increase ability of CNN to learn fine-grained features. Channel attention also incorporated to amplify features of important channels. ROI based cropping and AHE employed to enhance content of training image. Image augmentation utilized to increase dataset size. To address the issue of the class imbalance problem, focal loss has been applied. Sensitivity, precision, accuracy and F1 score metrics are used for performance evaluation. The author achieved 78% accuracy for binary classification. Precision, recall and F1 score values for positive class is 85, 67 and 75, respectively while 73, 88 and 80 for negative class. Classification accuracy of mild, moderate and sever class is 90, 97 and 96. Average accuracy of 95 % achieved with superior performance compared to existing methods.
RESUMO
The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process frameworks. Much research has been carried out in this area, but the research scope is colossal as it deals with open-ended problems such as being able to achieve high accuracy in little time using lightweight process frameworks. Convolution Neural Networks and their variants are widely used in various computer vision activities, but most of the architectures of CNN are application-specific. There is always a need for generic architectures with better performance. This paper introduces the Dimension-Based Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture generic and provide a dimension-wise selection of various height, width, and depth kernels. This single unit which uses the separable convolution concept provides multiple combinations using various dimension-based kernels. This single unit can be used for height-based, width-based, or depth-based dimensions; the same unit can even be used for height and width, width and depth, and depth and height dimensions. It can also be used for combinations involving all three dimensions of height, width, and depth. The main novelty of DBGC lies in the dimension selector block included in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs.
Assuntos
Computadores , Redes Neurais de ComputaçãoRESUMO
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same.
Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Previsões , Humanos , TecnologiaRESUMO
Distributed denial-of-service (DDoS) attacks are significant threats to the cyber world because of their potential to quickly bring down victims. Memcached vulnerabilities have been targeted by attackers using DDoS amplification attacks. GitHub and Arbor Networks were the victims of Memcached DDoS attacks with 1.3 Tbps and 1.8 Tbps attack strengths, respectively. The bandwidth amplification factor of nearly 50,000 makes Memcached the deadliest DDoS attack vector to date. In recent times, fellow researchers have made specific efforts to analyze and evaluate Memcached vulnerabilities; however, the solutions provided for security are based on best practices by users and service providers. This study is the first attempt at modifying the architecture of Memcached servers in the context of improving security against DDoS attacks. This study discusses the Memcached protocol, the vulnerabilities associated with it, the future challenges for different IoT applications associated with caches, and the solutions for detecting Memcached DDoS attacks. The proposed solution is a novel identification-pattern mechanism using a threshold scheme for detecting volume-based DDoS attacks. In the undertaken study, the solution acts as a pre-emptive measure for detecting DDoS attacks while maintaining low latency and high throughput.
Assuntos
Segurança Computacional , PrevisõesRESUMO
Human Action Recognition (HAR) is the classification of an action performed by a human. The goal of this study was to recognize human actions in action video sequences. We present a novel feature descriptor for HAR that involves multiple features and combining them using fusion technique. The major focus of the feature descriptor is to exploits the action dissimilarities. The key contribution of the proposed approach is to built robust features descriptor that can work for underlying video sequences and various classification models. To achieve the objective of the proposed work, HAR has been performed in the following manner. First, moving object detection and segmentation are performed from the background. The features are calculated using the histogram of oriented gradient (HOG) from a segmented moving object. To reduce the feature descriptor size, we take an averaging of the HOG features across non-overlapping video frames. For the frequency domain information we have calculated regional features from the Fourier hog. Moreover, we have also included the velocity and displacement of moving object. Finally, we use fusion technique to combine these features in the proposed work. After a feature descriptor is prepared, it is provided to the classifier. Here, we have used well-known classifiers such as artificial neural networks (ANNs), support vector machine (SVM), multiple kernel learning (MKL), Meta-cognitive Neural Network (McNN), and the late fusion methods. The main objective of the proposed approach is to prepare a robust feature descriptor and to show the diversity of our feature descriptor. Though we are using five different classifiers, our feature descriptor performs relatively well across the various classifiers. The proposed approach is performed and compared with the state-of-the-art methods for action recognition on two publicly available benchmark datasets (KTH and Weizmann) and for cross-validation on the UCF11 dataset, HMDB51 dataset, and UCF101 dataset. Results of the control experiments, such as a change in the SVM classifier and the effects of the second hidden layer in ANN, are also reported. The results demonstrate that the proposed method performs reasonably compared with the majority of existing state-of-the-art methods, including the convolutional neural network-based feature extractors.
Assuntos
Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Atividades Humanas , Humanos , Máquina de Vetores de SuporteRESUMO
OBJECTIVES: End-stage kidney disease disproportionately affects people of South Asian origin. This study aimed to uncover the lived experiences of this group of patients on centre-based haemodialysis (HD), the most prevalent dialysis modality. DESIGN: The study utilised a qualitative focus group methodology. Seven focus groups were conducted across four NHS Trusts in the UK including three in Gujarati and two each in Punjabi and Urdu. This provided an inclusive opportunity for South Asian patients to contribute in their language of origin. A total of 24 patients participated. Focus groups were facilitated by bilingual project workers and data were forward translated and analysed using thematic analysis. RESULTS: Four themes were identified. This included (1) 'treatment imposition', which comprised of the restrictive nature of HD, the effects of treatment and the feeling of being trapped in an endless process. (2) The 'patient-clinician relationship' centred around the impact of a perceived lack of staff time, and inadequacies in the quality of interactions. (3) 'Coping strategies' highlighted the role of cognitive reappraisal, living in the moment and family support networks in facilitating adjustment. (4) 'Pursuit of transplantation' included equating this form of treatment with restoring normality, alongside cultural factors limiting hopefulness for receiving an organ. CONCLUSIONS: In general, the experiences of South Asian patients receiving HD were not unique to this ethnic group. We did find distinct issues in relation to interactions with healthcare professionals, views on access to transplantation and the importance of family support networks. The study provides useful insights which may help enhance culturally tailored renal care.