Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Isr J Chem ; 63(3-4)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38046285

RESUMO

Functional regulation of cell signaling through dynamic changes in protein activity state as well as spatial organization represent two dynamic, complex, and conserved phenomena in biology. Seemingly separate areas of -omics method development have focused on building tools that can detect and quantify protein activity states, as well as map sub-cellular and intercellular protein organization. Integration of these efforts, through the development of chemical tools and platforms that enable detection and quantification of protein functional states with spatial resolution provide opportunities to better understand heterogeneity in the proteome within cell organelles, multi-cellular tissues, and whole organisms. This review provides an overview of and considerations for major classes of chemical proteomic probes and technologies that enable protein activity mapping from sub-cellular compartments to live animals.

2.
Biochemistry ; 62(21): 3126-3133, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37884446

RESUMO

The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.


Assuntos
Doença de Parkinson , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Doença de Parkinson/metabolismo , Óxido de Magnésio , Ácido Láctico , Proteína Desglicase DJ-1
3.
Cancer Discov ; 13(4): 1002-1025, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715544

RESUMO

KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. SIGNIFICANCE: Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Triose-Fosfato Isomerase , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
4.
Nat Biotechnol ; 41(4): 541-551, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36302987

RESUMO

Despite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding. A lead STR directly inhibits MYC binding in cells, downregulates MYC-dependent expression programs at the proteome level and inhibits MYC-dependent cell proliferation. Co-crystallization and structure determination of a STR:E-box DNA complex confirms retention of DNA recognition in a near identical manner as full-length bHLH TFs. We additionally demonstrate structure-blind design of STRs derived from alternative bHLH-TFs, confirming that STRs can be used to develop highly specific mimetics of TFs targeting other gene regulatory elements.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sequências Hélice-Alça-Hélice , Sequências Reguladoras de Ácido Nucleico , DNA/genética , DNA/metabolismo
5.
ACS Chem Biol ; 18(1): 91-101, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36562291

RESUMO

Methylglyoxal (MGO), a reactive metabolite byproduct of glucose metabolism, is known to form a variety of posttranslational modifications (PTMs) on nucleophilic amino acids. For example, cysteine, the most nucleophilic proteinogenic amino acid, forms reversible hemithioacetal and stable mercaptomethylimidazole adducts with MGO. The high reactivity of cysteine toward MGO and the rate of formation of such modifications provide the opportunity for mechanisms by which proteins and pathways might rapidly sense and respond to alterations in levels of MGO. This indirect measure of alterations in glycolytic flux would thereby allow disparate cellular processes to dynamically respond to changes in nutrient availability and utilization. Here we report the use of quantitative LC-MS/MS-based chemoproteomic profiling approaches with a cysteine-reactive probe to map the proteome-wide landscape of MGO modification of cysteine residues. This approach led to the identification of many sites of potential functional regulation by MGO. We further characterized the role that such modifications have in a catalytic cysteine residue in a key metabolic enzyme and the resulting effects on cellular metabolism.


Assuntos
Cisteína , Aldeído Pirúvico , Aldeído Pirúvico/química , Cisteína/química , Cromatografia Líquida , Óxido de Magnésio , Espectrometria de Massas em Tandem , Aminoácidos
6.
mBio ; 13(5): e0241522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36125275

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camundongos , Humanos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , SARS-CoV-2/genética , Inositol , Proteínas Serina-Treonina Quinases/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ribonucleases/genética , Fatores de Transcrição , RNA Mensageiro , Pulmão/metabolismo , Interferons , Proteína 1 de Ligação a X-Box/genética
7.
bioRxiv ; 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35821981

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE: SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.

8.
Methods Mol Biol ; 2371: 159-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34596848

RESUMO

Macrocyclization can confer enhanced stability, target affinity, and membrane permeability to peptide scaffolds, all of which are desirable properties for chemical probes and therapeutics. A wide array of macrocyclization chemistries have been reported over the last few decades; however, these often have limited compatibility with each other and across chemical environments, thus restricting access to specific molecular properties. In an effort to address some of these limitations, we recently described the use of Diels-Alder [4 + 2] cycloadditions for peptide macrocyclization. Among the attributes of this chemistry, we demonstrated that Diels-Alder cyclization can template diverse peptide secondary structures, proceed in organic or aqueous environments, and endow improved pharmacologic properties on cyclized peptides. Here, we present synthetic processes and characterization methods for the synthesis of Diels-Alder cyclized peptides.


Assuntos
Reação de Cicloadição , Biossíntese Peptídica , Ciclização , Peptídeos Cíclicos
9.
ACS Chem Biol ; 16(11): 2453-2461, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34581579

RESUMO

Methylglyoxal (MGO) is a reactive byproduct formed by several metabolic precursors, the most notable being triosephosphates in glycolysis. While many MGO-mediated adducts have been described, the reactivity and specific biomolecular targets of MGO remain incompletely mapped. Based on our recent discovery that MGO can form stable mercaptomethylimidazole crosslinks between cysteine and arginine (MICA) in proteins, we hypothesized that MGO may participate in myriad reactions with biologically relevant guanidines and thiols in proteins, metabolites, and perhaps other biomolecules. Herein, we performed steady-state and kinetic analyses of MGO reactivity with several model thiols, guanidines, and biguanide drugs to establish the plausible and prevalent adducts formed by MGO in proteins, peptides, and abundant cellular metabolites. We identified several novel, stable MICA metabolites that form in vitro and in cells, as well as a novel intermolecular post-translational MICA modification of surface cysteines in proteins. These data confirm that kinetic trapping of free MGO by thiols occurs rapidly and can decrease formation of more stable imidazolone (MG-H1) arginine adducts. However, reversible hemithioacetal adducts can go on to form stable MICA modifications in an inter- and intramolecular fashion with abundant or proximal guanidines, respectively. Finally, we discovered that intracellular MICA-glutathione metabolites are recognized and exported by the efflux pump MRP1, providing a parallel and perhaps complementary pathway for MGO detoxification working alongside the glyoxalase pathway. These data provide new insights into the plausible reactions involving MGO in cells and tissues, as well as several new molecular species in proteins and metabolites for further study.


Assuntos
Guanidina/química , Imidazóis/química , Proteínas/química , Aldeído Pirúvico/química , Compostos de Sulfidrila/química , Células HEK293 , Células HeLa , Humanos , Cinética
10.
Nat Methods ; 18(7): 763-767, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140701
12.
13.
Angew Chem Int Ed Engl ; 59(35): 15161-15165, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32415874

RESUMO

Herein, we report the development of an 18 F-labeled, activity-based small-molecule probe targeting the cancer-associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18 F radionuclide incorporation required for PET imaging. The resulting molecule, [18 F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000-fold selectivity relative to other serine hydrolases. [18 F]JW199 displays rapid, NCEH1-dependent accumulation in mouse tissues. Finally, we demonstrate that [18 F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple-negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.


Assuntos
Radioisótopos de Flúor/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Esterol Esterase/metabolismo , Animais , Feminino , Humanos , Camundongos
15.
Curr Opin Chem Biol ; 54: 76-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32146330

RESUMO

Recent advances in -omic profiling technologies have ushered in an era where we no longer want to merely measure the presence or absence of a biomolecule of interest, but instead hope to understand its function and interactions within larger signaling networks. Here, we review several emerging proteomic technologies capable of detecting protein interaction networks in live cells and their integration to draft holistic maps of proteins that respond to diverse stimuli, including bioactive small molecules. Moreover, we provide a conceptual framework to combine so-called 'top-down' and 'bottom-up' interaction profiling methods and ensuing proteomic profiles to directly identify binding targets of small molecule ligands, as well as for unbiased discovery of proteins and pathways that may be directly bound or influenced by those first responders. The integrated, interaction-based profiling methods discussed here have the potential to provide a unique and dynamic view into cellular signaling networks for both basic and translational biological studies.


Assuntos
Mapas de Interação de Proteínas , Proteômica/métodos , Ligantes , Biologia de Sistemas/métodos
16.
J Am Chem Soc ; 142(1): 146-153, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820968

RESUMO

We report a novel photoproximity protein interaction (PhotoPPI) profiling method to map protein-protein interactions in vitro and in live cells. This approach utilizes a bioorthogonal, multifunctional chemical probe that can be targeted to a genetically encoded protein of interest (POI) through a modular SNAP-Tag/benzylguanine covalent interaction. A first generation photoproximity probe, PP1, responds to 365 nm light to simultaneously cleave a central nitroveratryl linker and a peripheral diazirine group, resulting in diffusion of a highly reactive carbene nucleophile away from the POI. We demonstrate facile probe loading, and subsequent interaction- and light-dependent proximal labeling of a model protein-protein interaction (PPI) in vitro. Integration of the PhotoPPI workflow with quantitative LC-MS/MS enabled unbiased interaction mapping for the redox regulated sensor protein, KEAP1, for the first time in live cells. We validated known and novel interactions between KEAP1 and the proteins PGAM5 and HK2, among others, under basal cellular conditions. By contrast, comparison of PhotoPPI profiles in cells experiencing metabolic or redox stress confirmed that KEAP1 sheds many basal interactions and becomes associated with known lysosomal trafficking and proteolytic proteins like SQSTM1, CTSD, and LGMN. Together, these data establish PhotoPPI as a method capable of tracking the dynamic subcellular and protein interaction "social network" of a redox-sensitive protein in cells with high temporal resolution.


Assuntos
Processos Fotoquímicos , Hexoquinase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica
17.
Methods Enzymol ; 628: 243-262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31668232

RESUMO

Ongoing advances in chemical proteomic methods have facilitated detection and quantification of enzymatic activity, a highly informative parameter that is not captured in protein abundance measurements. However, some biological questions remain unanswered, since current gel- or LC-MS/MS-based detection methods suffer from limitations stemming from sample homogenization, signal-averaging, and an inherent bias toward abundant proteins. To address these shortcomings, we recently developed an activity-based proximity ligation (ADPL) platform to capture and quantify enzyme activity on the level of single cells, with high intra- and intercellular spatial resolution. In this chapter, we briefly discuss the rationale behind the ADPL platform, the design transition from the initial "sandwich-complex" workflow to the optimized, "direct conjugate" ADPL method, and conclude with detailed protocols for each. We also describe our novel use of the homo-bifunctional linker, disuccinimidyl suberate (DSS), to conjugate proteins and oligonucleotides, thus generating the necessary antibody-oligonucleotide recognition reagents for ADPL. Finally, we demonstrate the utility of ADPL to characterize enzyme activity from cytosol to nucleus, and specifically detect enzyme activity using "direct conjugate" ADPL.


Assuntos
Ensaios Enzimáticos/métodos , Análise de Célula Única/métodos , Biocatálise , Reagentes de Ligações Cruzadas/química , Células HeLa , Humanos , Proteômica/métodos , Succinimidas/química
18.
Proc Natl Acad Sci U S A ; 116(43): 21493-21500, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591248

RESUMO

Chemoproteomic methods can report directly on endogenous, active enzyme populations, which can differ greatly from measures of transcripts or protein abundance alone. Detection and quantification of family-wide probe engagement generally requires LC-MS/MS or gel-based detection methods, which suffer from low resolution, significant input proteome requirements, laborious sample preparation, and expensive equipment. Therefore, methods that can capitalize on the broad target profiling capacity of family-wide chemical probes but that enable specific, rapid, and ultrasensitive quantitation of protein activity in native samples would be useful for basic, translational, and clinical proteomic applications. Here we develop and apply a method that we call soluble activity-dependent proximity ligation (sADPL), which harnesses family-wide chemical probes to convert active enzyme levels into amplifiable barcoded oligonucleotide signals. We demonstrate that sADPL coupled to quantitative PCR signal detection enables multiplexed "writing" and "reading" of active enzyme levels across multiple protein families directly at picogram levels of whole, unfractionated proteome. sADPL profiling in a competitive format allows for highly sensitive detection of drug-protein interaction profiling, which allows for direct quantitative measurements of in vitro and in vivo on- and off-target drug engagement. Finally, we demonstrate that comparative sADPL profiling can be applied for high-throughput molecular phenotyping of primary human tumor samples, leading to the discovery of new connections between metabolic and proteolytic enzyme activity in specific tumor compartments and patient outcomes. We expect that this modular and multiplexed chemoproteomic platform will be a general approach for drug target engagement, as well as comparative enzyme activity profiling for basic and clinical applications.


Assuntos
Cromatografia Líquida/métodos , Enzimas/química , Proteoma/química , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Enzimas/genética , Enzimas/metabolismo , Humanos , Neoplasias/química , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sensibilidade e Especificidade
19.
J Am Chem Soc ; 141(41): 16374-16381, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31523967

RESUMO

Macrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution. This reaction can be applied alone or in concert with other stabilization chemistries, such as ring-closing olefin metathesis, to stabilize loop, turn, and α-helical secondary structural motifs. NMR and molecular dynamics studies of model loop peptides confirmed preferential formation of endo cycloadduct stereochemistry, imparting significant structural rigidity to the peptide backbone that resulted in augmented protease resistance and increased biological activity of a Diels-Alder cyclized (DAC) RGD peptide. Separately, we demonstrated the stabilization of DAC α-helical peptides derived from the ERα-binding protein SRC2. We solved a 2.25 Å cocrystal structure of one DAC helical peptide bound to ERα, which unequivocally corroborated endo stereochemistry of the resulting Diels-Alder adduct, and confirmed that the unique architecture of stabilizing motifs formed with this chemistry can directly contribute to target binding. These data establish Diels-Alder cyclization as a versatile approach to stabilize diverse protein structural motifs under a range of chemical environments.


Assuntos
Reação de Cicloadição , Compostos Macrocíclicos/química , Peptídeos/química , Modelos Moleculares , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Conformação Proteica
20.
Nat Methods ; 16(9): 894-901, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384043

RESUMO

Mass spectrometry enables global analysis of posttranslationally modified proteoforms from biological samples, yet we still lack methods to systematically predict, or even prioritize, which modification sites may perturb protein function. Here we describe a proteomic method, Hotspot Thermal Profiling, to detect the effects of site-specific protein phosphorylation on the thermal stability of thousands of native proteins in live cells. This massively parallel biophysical assay unveiled shifts in overall protein stability in response to site-specific phosphorylation sites, as well as trends related to protein function and structure. This method can detect intrinsic changes to protein structure as well as extrinsic changes to protein-protein and protein-metabolite interactions resulting from phosphorylation. Finally, we show that functional 'hotspot' protein modification sites can be discovered and prioritized for study in a high-throughput and unbiased fashion. This approach is applicable to diverse organisms, cell types and posttranslational modifications.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Fosfoproteínas/análise , Fosfoproteínas/química , Processamento de Proteína Pós-Traducional , Proteoma/análise , Temperatura , Células HeLa , Humanos , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA