Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 29: 100535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298885

RESUMO

Background and purpose: Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods: This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results: Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion: This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.

2.
Photoacoustics ; 22: 100261, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33854946

RESUMO

Atherosclerosis is a lipid-driven and an inflammatory disease of the artery walls. The composition of atherosclerotic plaque stratifies the risk of a specific plaque to cause a cardiovascular event. In an optical resolution photoacoustic microscopy setup, of 45 µm resolution, we extracted plaque lipid photoacoustic (PA) spectral signatures of human endarterectomy samples in the range of 1150-1240 nm, using matrix assisted laser desorption ionization mass spectrometry imaging as a reference. We found plaque PA signals to correlate best with sphingomyelins and cholesteryl esters. PA signal spectral variations within the plaque area were compared to reference molecular patterns and absorption spectra of lipid laboratory standards. Variability in the lipid spectroscopic features extracted by principal component analysis of all samples revealed three distinct components with peaks at: 1164, 1188, 1196 and 1210 nm. This result will guide the development of PA-based atherosclerosis disease staging capitalizing on lipidomics of atherosclerotic tissue.

3.
J Lipid Res ; 62: 100020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581415

RESUMO

Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.


Assuntos
Doenças das Artérias Carótidas
4.
J Am Soc Mass Spectrom ; 30(9): 1790-1800, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250318

RESUMO

Atherosclerosis is a lipid and inflammation-driven disease of the arteries that is characterized by gradual buildup of plaques in the vascular wall. A so-called vulnerable plaque, consisting of a lipid-rich necrotic core contained by a thin fibrous cap, may rupture and trigger thrombus formation, which can lead to ischemia in the heart (heart attack) or in the brain (stroke). In this study, we present a protocol to investigate the lipid composition of advanced human carotid plaques using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI), providing a framework that should enable the discrimination of vulnerable from stable plaques based on lipid composition. We optimized the tissue preparation and imaging methods by systematically analyzing data from three specimens: two human carotid endarterectomy samples (advanced plaque) and one autopsy sample (early stage plaque). We show a robust data reduction method and evaluate the variability of the endarterectomy samples. We found diacylglycerols to be more abundant in a thrombotic area compared to other plaque areas and could distinguish advanced plaque from early stage plaque based on cholesteryl ester composition. We plan to use this systematic approach to analyze a larger dataset of carotid atherosclerotic plaques.


Assuntos
Doenças das Artérias Carótidas/patologia , Processamento Eletrônico de Dados/métodos , Lipídeos/análise , Placa Aterosclerótica/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Doenças das Artérias Carótidas/cirurgia , Endarterectomia das Carótidas , Humanos , Processamento de Imagem Assistida por Computador , Placa Aterosclerótica/patologia , Reprodutibilidade dos Testes , Trombose/patologia
5.
J Mech Behav Biomed Mater ; 62: 456-467, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27281163

RESUMO

Very little is known about the structure and properties of peri-prosthetic fibrous tissue that is found around loose orthopaedic implants. We describe a method for characterizing the structural organisation (histology, confocal microscopy) as well as the nano- and micro-scale mechanical behaviour (atomic force microscopy, nanoindentation) of peri-prosthetic fibrous tissue. The tissue was collected from 11 patients undergoing revision surgery due to aseptic loosening. Sirius Red and Movat histological staining procedures indicated that the tissue mainly consists of collagen fibres and ground substance. However, large inter- and intra-patient variations in the relative proportions of these tissue components were found, as well as in collagen fibre orientation and possibly also maturation. The nano-scale Young׳s moduli ranged from 0-950kPa, but showed large inter-patient variability. When the results per sample were presented in a probability density function, we could roughly discriminate one peak in the 0-100kPa range and/or one peak in the 100-500Pa range. These nano-scale moduli seem to respectively present the mechanical properties of glycosaminoglycan (GAG) and collagen molecules. The majority of the micro-scale Young׳s moduli ranged between 0.5 and 2.0kPa for all samples. This explorative study provides new insights in (the variations of) structural organisation and mechanical properties of peri-prosthetic tissue.


Assuntos
Prótese de Quadril , Falha de Prótese , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril , Colágeno/química , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA