Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 10(5): 869-886, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886415

RESUMO

A prominent obstacle in scaling up tissue engineering technologies for human applications is engineering an adequate supply of oxygen and nutrients throughout artificial tissues. Sugar glass has emerged as a promising 3D-printable, sacrificial material that can be used to embed perfusable networks within cell-laden matrices to improve mass transfer. To characterize and optimize a previously published sugar ink, we investigated the effects of sucrose, glucose, and dextran concentration on the glass transition temperature (Tg), printability, and stability of 3D-printed sugar glass constructs. We identified a sucrose ink formulation with a significantly higher Tg (40.0 ± 0.9°C) than the original formulation (sucrose-glucose blend, Tg = 26.2 ± 0.4°C), which demonstrated a pronounced improvement in printability, resistance to bending, and final print stability, all without changing dissolution kinetics and decomposition temperature. This formulation allowed printing of 10-cm-long horizontal cantilever filaments, which can enable the printing of complex vascular segments along the x-, y-, and z-axes without the need for supporting structures. Vascular templates with a single inlet and outlet branching into nine channels were 3D printed using the improved formulation and subsequently used to generate perfusable alginate constructs. The printed lattice showed high fidelity with respect to the input geometry, although with some channel deformation after alginate casting and gelation-likely due to alginate swelling. Compared with avascular controls, no significant acute cytotoxicity was noted when casting pancreatic beta cell-laden alginate constructs around improved ink filaments, whereas a significant decrease in cell viability was observed with the original ink. The improved formulation lends more flexibility to sugar glass 3D printing by facilitating the fabrication of larger, more complex, and more stable sacrificial networks. Rigorous characterization and optimization methods for improving sacrificial inks may facilitate the fabrication of functional cellular constructs for tissue engineering, cellular biology, and other biomedical applications.

2.
Mater Sci Eng C Mater Biol Appl ; 123: 112009, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812628

RESUMO

Different bioinks have been used to produce cell-laden alginate-based hydrogel constructs for cell replacement therapy but some of these approaches suffer from issues with print quality, long-term mechanical instability, and bioincompatibility. In this study, new alginate-based bioinks were developed to produce cell-laden grid-shaped hydrogel constructs with stable integrity and immunomodulating capacity. Integrity and printability were improved by including the co-block-polymer Pluronic F127 in alginate solutions. To reduce inflammatory responses, pectin with a low degree of methylation was included and tested for inhibition of Toll-Like Receptor 2/1 (TLR2/1) dimerization and activation and tissue responses under the skin of mice. The viscoelastic properties of alginate-Pluronic constructs were unaffected by pectin incorporation. The tested pectin protected printed insulin-producing MIN6 cells from inflammatory stress as evidenced by higher numbers of surviving cells within the pectin-containing construct following exposure to a cocktail of the pro-inflammatory cytokines namely, IL-1ß, IFN-γ, and TNF-α. The results suggested that the cell-laden construct bioprinted with pectin-alginate-Pluronic bioink reduced tissue responses via inhibiting TLR2/1 and support insulin-producing ß-cell survival under inflammatory stress. Our study provides a potential novel strategy to improve long-term survival of pancreatic islet grafts for Type 1 Diabetes (T1D) treatment.


Assuntos
Bioimpressão , Insulinas , Alginatos , Animais , Camundongos , Pectinas , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA