Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 204, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509474

RESUMO

The Irano-Turanian region is one of the largest floristic regions in the world and harbors a high percentage of endemics, including cushion-like and dwarf-shrubby taxa. Onobrychis cornuta is an important cushion-forming element of the subalpine/alpine flora of the Irano-Turanian floristic region. To specify the genetic diversity among the populations of this species (including individuals of O. elymaitica), we employed nrDNA ITS and two noncoding regions of plastid DNA (rpl32-trnL(UAG) and trnT(UGU)-trnL(UAA)). The most striking feature of O. cornuta assemblages was the unexpectedly high nucleotide diversity in both the nDNA and cpDNA dataset. In the analyses of nuclear and plastid regions, 25 ribotypes and 42 haplotypes were found among 77 and 59 accessions, respectively, from Iran, Turkey, and Afghanistan. Network analysis of the datasets demonstrated geographic differentiation within the species. Phylogenetic analyses of all dataset retrieved O. cornuta as a non-monophyletic species due to the inclusion of O. elymaitica, comprising four distinct lineages. In addition, our analyses showed cytonuclear discordance between both nuclear and plastid topologies regarding the position of some O. cornuta individuals. The underlying causes of this inconsistency remain unclear. However, we speculate that chloroplast capture, incomplete lineage sorting, and introgression were the main reasons for this event. Furthermore, molecular dating analysis indicated that O. cornuta originated in the early Pliocene (around 4.8 Mya) and started to diversify throughout the Pliocene and in particular the Pleistocene. Moreover, O. elymaitica was reduced to a subspecific rank within the species.


Assuntos
Fabaceae , Humanos , Filogenia , Fabaceae/genética , Evolução Biológica , DNA de Cloroplastos/genética , Verduras
2.
PLoS One ; 18(5): e0286083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220139

RESUMO

Astragalus is the largest flowering plant genus. We assembled the plastid genomes of four Astragalus species (Astragalus iranicus, A. macropelmatus, A. mesoleios, A. odoratus) using next-generation sequencing and analyzed their plastomes including genome organization, codon usage, nucleotide diversity, prediction of RNA editing and etc. The total length of the newly sequenced Astragalus plastomes ranged from 121,050 bp to 123,622 bp, with 110 genes comprising 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes. Comparative analysis of the chloroplast genomes of Astragalus revealed several hypervariable regions comprising three non-coding sites (trnQ(UUG)-accD, rps7 -trnV(GAC) and trnR(ACG)-trnN(GUU)) and four protein-coding genes (ycf1, ycf2, accD and clpP), which have potential as molecular markers. Positive selection signatures were found in five genes in Astragalus species including rps11, rps15, accD, clpP and ycf1. The newly sequenced species, A. macropelmatus, has an approximately 13-kb inversion in IR region. Phylogenetic analysis based on 75 protein-coding gene sequences confirmed that Astragalus form a monophyletic clade within the tribe Galegeae and Oxytropis is sister group to the Coluteoid clade. The results of this study may helpful in elucidating the chloroplast genome structure, understanding the evolutionary dynamics at genus Astragalus and IRLC levels and investigating the phylogenetic relationships. Moreover, the newly plastid genomes sequenced have been increased the plastome data resources on Astragalus that can be useful in further phylogenomic studies.


Assuntos
Astrágalo , Fabaceae , Genoma de Cloroplastos , Genomas de Plastídeos , Filogenia
3.
Sci Rep ; 12(1): 9390, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672438

RESUMO

Taxol (Paclitaxel) and its derivative taxanes are widely used in chemotherapy and treatment of different types of cancer. Although the extracted taxanes from Taxus sp. are currently used in semi-synthetic production of Taxol, providing alternative always available sources is still a main concern. Due to availability and fast growth rate, microorganisms are much potent alternative sources for taxanes. In the present study, 249 endophytic fungi were isolated from Corylus avellana at six different locations of Iran, among which 18 species were capable to produce taxanes. Genotyping analysis indicated that 17 genera were ascomycetes but only one basidiomycete. Seven taxanes were detected and quantified in solid and suspension cultures by HPLC and their structures were confirmed by LC-Mass analysis. Among endophytes, CA7 had all 7 taxoids and CA1 had the highest Taxol yield. In 78% of endophytes transferring to liquid media was accompanied by increase of taxanes yield and increased taxan production and its release to media up to 90%. Evaluation of cytotoxicity indicated that extracts of all isolated fungi were lethal to MCF7 cells. Since endophytes produced remarkable amounts of taxanes, they can be suggested as alternative inexpensive and easily available resources for Taxol production in semi-synthesis plans.


Assuntos
Ascomicetos , Corylus , Taxus , Ascomicetos/genética , Endófitos , Fungos , Humanos , Paclitaxel , Taxoides , Taxus/microbiologia
4.
BMC Plant Biol ; 22(1): 75, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183127

RESUMO

BACKGROUND: Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS: In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS: Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.


Assuntos
Fabaceae/genética , Genoma de Cloroplastos , Filogenia , Uso do Códon , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Sequências Repetitivas de Ácido Nucleico , Seleção Genética
5.
PLoS One ; 15(3): e0229846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32134967

RESUMO

The genome organization and gene content of plastome (plastid genome) are highly conserved among most flowering plant species. Plastome variation (in size and gene order) is rare in photosynthetic species but size variation, rearrangements and gene/intron losses is attributed to groups of seed plants. Fabaceae (legume family), in particular the subfamily Papilionoideae and the inverted repeat lacking clade (IRLC), a largest legume lineage, display the most dramatic and structural change which providing an excellent model for understanding of mechanisms of genomic evolution. The IRLC comprises 52 genera and ca 4000 species divided into seven tribes. In present study, we have sampled several representatives from each tribe across the IRLC from various herbaria and field. The ycf4 gene, which plays a role in regulating and assembly of photosystem I, is more variable in the tribe Fabeae than in other tribes. In certain species of Lathyrus, Pisum and Vavilovia, all belonging to Fabeae, the gene is either absent or a pseudogene. Our study suggests that ycf4 gene has undergone positive selection. Furthermore, the rapid evolution of the gene is locus and lineage specific and is not a shared character of the IRLC in legumes.


Assuntos
Fabaceae/genética , Genomas de Plastídeos , Plastídeos/genética , Pseudogenes , DNA de Plantas/genética , Evolução Molecular , Deleção de Genes , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA