Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(45): 41096-41099, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406580

RESUMO

It is essential to determine the heat storage efficiency of shape-stabilized phase change materials (ss-PCMs). In two published articles, the formula for heat storage efficiency is presented using two distinct equations. Using the two equations, the calculated values for heat storage efficiency revealed significant discrepancies. The outcomes cannot be compared. The evaluation of heat storage efficiency has a substantial impact on the practical application of PCMs and serves as a performance benchmark for the PCM samples that have been tested. In this paper, the correct equations for calculating the efficiency of heat storage are presented. Furthermore, it is essential to note that the methods used to calculate the supercooling value are not straightforward. Consequently, this paper clarified the correct formula and/or method for determining the supercooling value and heat storage efficiency of ss-PCMs.

2.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206694

RESUMO

The properties of polyethylene glycol-6000 (PEG)/MgCaCO3, a low-cost shape-selective phase change material (ss-PCM), make it highly suitable for solar thermal applications. Nanosized porous MgO-doped CaCO3 with Mg molar concentrations of 5%, 10%, and 15% were synthesized using a hydrothermal technique. The prepared MgO-CaCO3 matrices were then impregnated with PEG to obtain PEG/MgCaCO3 as an ss-PCM. Samples identified as PEG-5MgCaCO3 (P-5-MCC), PEG-10MgCaCO3 (P-10-MCC), and PEG-15MgCaCO3 (P-15-MCC) were prepared and studied. Interestingly, P-10-MCC has the smallest particle size together with a good porous structure compared to the other two materials. The results of thermogravimetric analyses and differential scanning calorimetry indicate that the small particle size and porous structure facilitate the impregnation of approximately 69% of the PEG into the 10-MCC matrix. The latent heat and energy storage efficiency of PEG in the P-10-MCC sample are 152.5 J/g and 96.48%, respectively, which are significantly higher than those of comparable materials. Furthermore, in addition to the improvement of the thermal conductivity of the P-10-MCC, its supercooling is also reduced to some extent. The combined mesoporous and macro-porous structure of P-10-MCC is critical to retaining a large amount of PEG within the matrix, resulting in a high latent heat in the operating temperature range of 35-57 °C. The P-10MCC sample also demonstrates a high energy storage capacity (98.59%), high thermal energy storage/release rates, and exceptional shape-stabilized PCM properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA