Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(9): 4661-4668, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38375793

RESUMO

Single-atom (SA) decoration has emerged as a frontier in catalysis due to its unique characteristics. Recently, decorated Pt single atoms on titania have shown promise in photocatalytic hydrogen evolution. In this work, we demonstrate that Pt SAs can spontaneously deposit on the surface, driven by electrostatic forces; the key is to determine the golden pH and surface potential. We conducted a comprehensive investigation into the influence of the pH of the deposition precursor on the spontaneous adsorption of Pt SAs onto TiO2 nanosheets (TiNSs). We introduced a straightforward pH-dependent and charge-dependent strategy for the solid electrostatic anchoring of Pt SAs on TiO2. Furthermore, we established that the level of Pt loading can be controlled by adjusting the precursor pH. X-ray photoelectron spectroscopy (XPS) and high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) were used to evaluate the Pt SA-decorated samples. Photocatalytic hydrogen production activity was assessed under ultraviolet (UV) (365 nm) irradiation. Notably, we found that at a pH of 8, slightly below the measured point of zero charge (PZC), a unique mixture of Pt clusters and single atoms was deposited on the surface of TiNSs. This unique composition significantly improved hydrogen production, resulting in ∼3.7 mL of hydrogen generated after 8 h of UV exposure by only 10 mg of the Pt-decorated TiNS (with Pt loadings of 0.12 at. %), which is ∼300 times higher than the undecorated TiNS.

2.
ChemistryOpen ; : e202300185, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088583

RESUMO

Titanium dioxide (TiO2 ) is the material of choice for photocatalytic and electrochemical applications owing to its outstanding physicochemical properties. However, its wide bandgap and relatively low conductivity limit its practical application. Modifying TiO2 with carbon species is a promising route to overcome these intrinsic complexities. In this work, we propose a facile method to modify TiO2 nanotubes (NTs) based on the remnant organic electrolyte retained inside the nanotubes after the anodization process, that is, without removing it by immersion in ethanol. Carbon-modified TiO2 NTs (C-TiO2 NTs) showed enhanced H2 evolution in photocatalysis under UV illumination in aqueous solutions. When the C-TiO2 NTs were subjected to UV light illumination, the carbon underwent modification, resulting in higher measured photocurrents in the tube layers. After UV illumination, the IPCE of the C-TiO2 NTs was 4.4-fold higher than that of the carbon-free TiO2 NTs.

3.
iScience ; 24(8): 102938, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430818

RESUMO

Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.

4.
Adv Mater ; 32(16): e1908505, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125728

RESUMO

Single-atom (SA) catalysis is a novel frontline in the catalysis field due to the often drastically enhanced specific activity and selectivity of many catalytic reactions. Here, an atomic-scale defect engineering approach to form and control traps for platinum SA sites as co-catalyst for photocatalytic H2 generation is described. Thin sputtered TiO2 layers are used as a model photocatalyst, and compared to the more frequently used (001) anatase sheets. To form stable SA platinum, the TiO2 layers are reduced in Ar/H2 under different conditions (leading to different but defined Ti3+ -Ov surface defects), followed by immersion in a dilute hexachloroplatinic acid solution. HAADF-STEM results show that only on the thin-film substrate can the density of SA sites be successfully controlled by the degree of reduction by annealing. An optimized SA-Pt decoration can enhance the normalized photocatalytic activity of a TiO2 sputtered sample by 150 times in comparison to a conventional platinum-nanoparticle-decorated TiO2 surface. HAADF-STEM, XPS, and EPR investigation jointly confirm the atomic nature of the decorated Pt on TiO2 . Importantly, the density of the relevant surface exposed defect centers-thus the density of Pt-SA sites, which play the key role in photocatalytic activity-can be precisely optimized.

5.
ACS Appl Mater Interfaces ; 11(49): 45665-45673, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714052

RESUMO

With a large-scale usage of portable electric appliances, a high demand for increasingly high-density energy storage devices has emerged. MoO3 has, in principle, a large potential as a negative electrode material in supercapacitive devices due to high charge densities that can be obtained from its reversible redox reactions. Nevertheless, the extremely poor electrochemical stability of MoO3 in aqueous electrolytes prevents a practical use in high capacitance devices. In this work, we describe how to overcome this severe stability issue by forming amorphous molybdenum oxide/tantalum oxide nanotubes by anodic oxidation of a Mo-Ta alloy. The presence of a critical amount of Ta oxide (>20 at. %) prevents the electrochemical decay of the MoO3 phase and thus yields an extremely high stability. Due to the protection provided by tantalum oxide, no capacitance losses are measureable after 10,000 charging/discharging cycles.

6.
ChemistryOpen ; 7(10): 797-802, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302303

RESUMO

In the present work, we report the use of TiO2 nanotube (NT) layers with a regular intertube spacing that are decorated by Pt nanoparticles through the atomic layer deposition (ALD) of Pt. These Pt-decorated spaced (SP) TiO2 NTs are subsequently explored for photocatalytic H2 evolution and are compared to classical close-packed (CP) TiO2 NTs that are also decorated with various amounts of Pt by using ALD. On both tube types, by varying the number of ALD cycles, Pt nanoparticles of different sizes and areal densities are formed, uniformly decorating the inner and outer walls from tube top to tube bottom. The photocatalytic activity for H2 evolution strongly depends on the size and density of Pt nanoparticles, driven by the number of ALD cycles. We show that, for SP NTs, a much higher photocatalytic performance can be achieved with significantly smaller Pt nanoparticles (i.e. for fewer ALD cycles) compared to CP NTs.

7.
ACS Appl Mater Interfaces ; 10(21): 18220-18226, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29741090

RESUMO

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H2 generation, with a H2 production rate of 12.04 µL h-1 under solar light. This represents a strongly enhanced activity as compared to TiO2 NTs decorated with monometallic particles of Au (7 µL h-1) or Pt (9.96 µL h-1).

8.
ChemSusChem ; 11(11): 1873-1879, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644796

RESUMO

Over the past years, α-Fe2 O3 (hematite) has re-emerged as a promising photoanode material in photoelectrochemical (PEC) water splitting. In spite of considerable success in obtaining relatively high solar conversion efficiency, the main drawbacks hindering practical application of hematite are its intrinsically hampered charge transport and sluggish oxygen evolution reaction (OER) kinetics on the photoelectrode surface. In the present work, we report a strategy that synergistically addresses both of these critical limitations. Our approach is based on three key features that are applied simultaneously: i) a careful nanostructuring of the hematite photoanode in the form of nanorods, ii) doping of hematite by Sn4+ ions using a controlled gradient, and iii) surface decoration of hematite by a new class of layered double hydroxide (LDH) OER co-catalysts based on Zn-Co LDH. All three interconnected forms of functionalization result in an extraordinary cathodic shift of the photocurrent onset potential by more than 300 mV and a PEC performance that reaches a photocurrent density of 2.00 mA cm-2 at 1.50 V vs. the reversible hydrogen electrode.

9.
Chemistry ; 23(50): 12406-12411, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28654181

RESUMO

In the present work we report on the key factors dictating the photoelectrochemical (PEC) performance of suboxide titania (TiOx ) nanotubes. TiOx nanotubes were produced by a systematic variation of reduction heat treatments of TiO2 in Ar/H2 . The properties of the TiOx tubes were investigated by electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), solid-state conductivity, reflectivity measurements, photocurrent spectroscopy, and photoelectrochemical hydrogen evolution. In line with earlier literature, these suboxide tubes show a drastically improved photoelectrochemical water-splitting performance compared to non-reduced anatase TiO2 tubes. In this work we show that the key improvement in water-splitting performance is due to the strongly improved conductivity of TiOx semimetalic tubes, reaching 13.5 KΩ per tube compared to 70 MΩ (for non-reduced anatase), and is not due to the enhanced visible-light absorbance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA