Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 7(307): 307ra154, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424569

RESUMO

Type I interferon (IFN-α/ß) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/ß in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/ß receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/ß. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/ß responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/ß in human antiviral immunity.


Assuntos
Antivirais/metabolismo , Imunidade , Receptor de Interferon alfa e beta/deficiência , Evolução Fatal , Genes Recessivos , Teste de Complementação Genética , Humanos , Lactente , Interferons/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 110(8): 3053-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23391734

RESUMO

Severe infectious disease in children may be a manifestation of primary immunodeficiency. These genetic disorders represent important experiments of nature with the capacity to elucidate nonredundant mechanisms of human immunity. We hypothesized that a primary defect of innate antiviral immunity was responsible for unusually severe viral illness in two siblings; the proband developed disseminated vaccine strain measles following routine immunization, whereas an infant brother died after a 2-d febrile illness from an unknown viral infection. Patient fibroblasts were indeed abnormally permissive for viral replication in vitro, associated with profound failure of type I IFN signaling and absence of STAT2 protein. Sequencing of genomic DNA and RNA revealed a homozygous mutation in intron 4 of STAT2 that prevented correct splicing in patient cells. Subsequently, other family members were identified with the same genetic lesion. Despite documented infection by known viral pathogens, some of which have been more severe than normal, surviving STAT2-deficient individuals have remained generally healthy, with no obvious defects in their adaptive immunity or developmental abnormalities. These findings imply that type I IFN signaling [through interferon-stimulated gene factor 3 (ISGF3)] is surprisingly not essential for host defense against the majority of common childhood viral infections.


Assuntos
Predisposição Genética para Doença , Fator de Transcrição STAT2/genética , Viroses/genética , Sequência de Bases , Células Cultivadas , Pré-Escolar , Primers do DNA , Feminino , Humanos , Interferon Tipo I/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA