RESUMO
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
RESUMO
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m-2 d-1 significantly reduced fungal growth rates (by between 22% and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and NER, showed that the UV-B-induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr respectively), demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. We present the first study to examine the capability of the Arctic and Antarctic Pseudogymnoascus sp. to perform photoreactivation and/or NER via RT-qPCR approaches, and also clarify the effects of light on UV-B-induced DNA damage repair in vivo by quantifying cyclobutene pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts. Physiological response data, including relative growth rate, pigmentation and conidia production in these Pseudogymnoascus isolates exposed to UV-B radiation are also presented.
Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , Regiões Antárticas , Dano ao DNA , Reparo do DNA , Pigmentação , Dímeros de Pirimidina/metabolismo , Pirimidinonas , Esporos Fúngicos/metabolismoRESUMO
Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.
RESUMO
BACKGROUND: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats. RESULTS: Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection. CONCLUSIONS: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.