Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Virol J ; 21(1): 75, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539202

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Proteínas Virais/genética , Filogenia , Genômica , Surtos de Doenças
2.
J Colloid Interface Sci ; 662: 870-882, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382371

RESUMO

The extensive examination of hexagonal molybdenum carbide (ß-Mo2C) as a non-noble cocatalyst in the realm of photocatalytic H2 evolution is predominantly motivated by its exceptional capacity to adsorb H+ ions akin to Pt and its advantageous conductivity characteristics. However, the H2 evolution rate of photocatalysts modified with ß-Mo2C is limited as a result of their comparatively low ability to release H through desorption. Therefore, a facile method was employed to synthesize carbon intercalated dual phase molybdenum carbide (MC@C) quantum dots (ca. 3.13 nm) containing both α-MoC and ß-Mo2C decorated on g-C3N4 (gCN). The synthesis process involved a simple and efficient combination of sonication-assisted self-assembly and calcination techniques. 3-MC@C/gCN exhibited the highest efficiency in generating H2, with a rate of 4078 µmol g-1h-1 under 4 h simulated sunlight irradiation, which is 13 times higher than pristine gCN. Furthermore, from the cycle test, 3-MC@C/gCN showcased exceptional photochemical stability of 65 h, as it maintained a H2 evolution rate of 40 mmol g-1h-1. The heightened level of activity observed in the 3-MC@C/gCN system can be ascribed to the synergistic effects of MoC-Mo2C that arise due to the existence of a carbon layer. The presence of a carbon layer enhanced the transmission of photoinduced electrons, while the MoC-Mo2C@C composite served as active sites, thereby facilitating the H2 production reaction of gCN. The present study introduces a potentially paradigm-shifting concept pertaining to the exploration of novel Mo-based cocatalysts with the aim of augmenting the efficacy of photocatalytic H2 production.

3.
Nat Commun ; 14(1): 7676, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996415

RESUMO

Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.

4.
Nanoscale ; 15(14): 6536-6562, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942445

RESUMO

The electro/photocatalytic CO2 reduction reaction (CO2RR) is a long-term avenue toward synthesizing renewable fuels and value-added chemicals, as well as addressing the global energy crisis and environmental challenges. As a result, current research studies have focused on investigating new materials and implementing numerous fabrication approaches to increase the catalytic performances of electro/photocatalysts toward the CO2RR. MXenes, also known as 2D transition metal carbides, nitrides, and carbonitrides, are intriguing materials with outstanding traits. Since their discovery in 2011, there has been a flurry of interest in MXenes in electrocatalysis and photocatalysis, owing to their several benefits, including high mechanical strength, tunable structure, surface functionality, high specific surface area, and remarkable electrical conductivity. Herein, this review serves as a milestone for the most recent development of MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR. The overall structure of MXenes is described, followed by a summary of several synthesis pathways classified as top-down and bottom-up approaches, including HF-etching, in situ HF-formation, electrochemical etching, and halogen etching. Additionally, the state-of-the-art development in the field of both the electrocatalytic and photocatalytic CO2RR is systematically reviewed. Surface termination modulation and heterostructure engineering of MXene-based electro/photocatalysts, and insights into the reaction mechanism for the comprehension of the structure-performance relationship from the CO2RR via density functional theory (DFT) have been underlined toward activity enhancement. Finally, imperative issues together with future perspectives associated with MXene-based electro/photocatalysts are proposed.

5.
ACS Omega ; 8(2): 1851-1863, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687105

RESUMO

Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.

6.
Environ Sci Pollut Res Int ; 30(7): 17129-17148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35554814

RESUMO

Removal of H2S (hydrogen sulfide) from biogas is anticipated for higher energy conversion of methane (CH4), while reducing the detrimental impacts of corroding the metal parts in the plant and its hazardous effect on humans and the environment. The introduction of microwave (MW) heating and nitrogen-modification could generate superior adsorbent features, contributing to high H2S removal. Up to date, there is no work reported on the influence of physicochemical characteristics of nitrogen-modified carbon synthesized via MW and conventional heating (TH) methods and their performance in H2S removal. Palm shell activated carbon (PSAC) was functionalized with nitrogen groups via urea impregnation, followed by the synthesis of MW and TH at 950 °C, 500 ml/min of N2 flow rate and 30 min of heating time. MW and TH heating effects on the modified PSAC adsorbent were analysed and compared towards hydrogen sulfide (H2S) removal. PSAC with nitrogen functionalization produced using MW heating (PSAC-MW) demonstrates superior performance, with an adsorption capacity of 356.94 mg/g. The adsorbent sample generated using MW heating exhibited notable properties, including a large surface area and a sponge-like structure, with new pores developed within the current pores. Instead of that, there was an observation of 'hot spot' appearance during the MW heating process, which is believed to be responsible for the development of physical and chemical characteristics of the adsorbent. Thus, it is believed that MW heating was assisted in the development of the adsorbent's properties and at the same time contributed to the high removal of H2S at low adsorption temperature. The utilization of biomass-based adsorbent (PSAC) for H2S removal can address the lignocellulosic waste disposal problem, while mitigating the H2S release from the biogas production plants thus has several environmental merits. This indirectly contributed to zero-waste generation, while overcoming the adverse effects of H2S.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Humanos , Biocombustíveis/análise , Carvão Vegetal/química , Micro-Ondas , Sulfeto de Hidrogênio/análise , Nitrogênio/análise , Adsorção
7.
Environ Res ; 212(Pt C): 113394, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537501

RESUMO

The co-existence of organic contaminants and heavy metals including 4-chlorophenol (4-CP) and Cr(VI) in aquatic system have become a challenging task in the wastewater treatment. Herein, the synchronous photocatalytic decomposition of 4-CP and Cr(VI) over new Z-scheme CoFe2O4/P-BiOBr heterojunction nanocomposites were revealed. In this work, the nanocomposites were successfully developed via a surfactant-free hydrothermal method. The heterojunction interface was created by decorating magnetic CoFe2O4 nanoparticles onto P-BiOBr nanosheets. The as-fabricated CoFe2O4/P-BiOBr nanocomposites substantially improved the synchronous decomposition of 4-CP and Cr(VI) compared to the single-phase component samples under visible light irradiation. Particularly, the 30-CoFe2O4/P-BiOBr nanocomposite displayed the best photocatalytic performance, which decomposed 95.6% 4-CP and 100% Cr(VI) within 75 min. The photocatalytic improvement was assigned to the Z-scheme heterojunction assisted charge migration between CoFe2O4 and P-BiOBr, and the acceleration of charge carrier separation was validated by the findings of charge dynamics measurements. The harmful 4-CP was photodegraded into smaller organics whereas the Cr(VI) was photoreduced into Cr(III) after 30-CoFe2O4/P-BiOBr photocatalysis, and the good recyclability of fabricated nanocomposite in photocatalytic reaction also showed promising potential for practical applications in environmental remediation. Finally, the radical quenching tests confirmed that there existed the Z-scheme path of charge migration in CoFe2O4/P-BiOBr nanocomposite, which was the mechanism responsible for its high photoactivity.

8.
Phys Chem Chem Phys ; 24(18): 11124-11130, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35474006

RESUMO

Surface defect engineering on the nanoscale has attracted extensive research attention lately; however, its role in modulating the properties and catalytic performance of a semiconducting material has not been comprehensively covered. Here, we systematically unraveled the effect of defect engineering towards textural, electronic and optical properties of graphitic carbon nitride (g-C3N4), as well as its photocatalytic mechanism of CO2 reduction using first-principle calculations by density functional theory through the introduction of various defect sites. Among the five unique atoms in g-C3N4, the vacancy site was found to be the most feasible at the two-coordinated nitrogen, N2. By initiating N2 point defects, an asymmetric electron density distribution was engendered around the vacancy region, which resulted in an evolution of semiconducting properties. We also discovered an improved charge separation efficiency and CO2 adsorption affinity in g-C3N4, which rendered a more thermodynamically feasible pathway for CO2 reduction to CO, CH3OH and CH4 fuels. This theoretical finding is hoped to shed light on the importance of the defect engineering strategy towards photocatalytic enhancement in g-C3N4.

9.
Chemosphere ; 287(Pt 4): 132384, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597645

RESUMO

BiFeO3 nanoparticle decorated on flower-like ZnO (BiFeO3/ZnO) was fabricated through a facile hydrothermal-reflux combined method. This material was utilized as a composite photocathode for the first time in microbial fuel cell (MFC) to reduce the copper ion (Cu2+) and power generation concomitantly. The resultant BiFeO3/ZnO-based MFC displayed distinct photoelectrocatalytic activities when different weight percentages (wt%) BiFeO3 were used. The 3 wt% BiFeO3/ZnO MFC achieved the maximum power density of 1.301 W m-2 in the catholyte contained 200 mg L-1 of Cu2+ and the power density was greatly higher than those pure ZnO and pure BiFeO3 photocathodes. Meanwhile, the MFC exhibited 90.7% removal of Cu2+ within 6 h under sunlight exposure at catholyte pH 4. The addition of BiFeO3 nanoparticles not only manifested outstanding capability in harvesting visible light, but also facilitated the formation of Z-scheme BiFeO3/ZnO heterojunction structure to induce the charge carrier transfer along with enhanced redox abilities for the cathodic reduction. The pronounced electrical output and Cu2+ reduction efficiencies can be realized through the synergistic cooperation between the bioanode and BiFeO3/ZnO photocathode in the MFC. Furthermore, the developed BiFeO3/ZnO composite presented a good stability and reusability of photoelectrocatalytic activity up to five cyclic runs.


Assuntos
Fontes de Energia Bioelétrica , Óxido de Zinco , Cobre , Eletricidade , Eletrodos
10.
Chem Rev ; 122(3): 3879-3965, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34968051

RESUMO

Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.


Assuntos
Recuperação e Remediação Ambiental , Energia Solar , Catálise , Fósforo , Semicondutores
11.
J Hazard Mater ; 423(Pt A): 127061, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34788939

RESUMO

While sulphur dioxide (SO2) is known for its toxicity, numerous effective countermeasures were innovated to alleviate its hazards towards the environment. In particular, catalytic reduction is favoured for its potential in converting SO2 into harmless, yet marketable product, such as elemental sulphur. Therefore, current review summarises the critical findings in catalytic SO2 reduction, emphasising on both dry- and wet-based technology. As for the dry-based technology, knowledge related to SO2 reduction over metal-, rare earth- and carbon-based catalysts are summarised. Significantly, both the reduction mechanisms and important criteria for efficient SO2 reduction are elucidated too. Meanwhile, the wet-based SO2 reduction are typically conducted in reactive liquid medium, such as metal complexes, ionic liquids and organic solvents. Therefore, the applications of the aforesaid liquid mediums are discussed thoroughly in the similar manner to dry-technology. Additionally, the pros and cons of each type of catalyst are also presented to provide valuable insights to the pertinent researchers. Finally, some overlooked aspects in both dry- and wet-based SO2 reduction are identified, with potential solutions given too. With these insights, current review is anticipated to contribute towards practicality improvement of catalytic SO2 reduction, which in turn, protects the environment from SO2 pollution.


Assuntos
Dióxido de Enxofre , Enxofre , Carbono , Catálise , Tecnologia
12.
Nanomaterials (Basel) ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34578735

RESUMO

Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g-1 for starting graphene oxide to 762.5 and 1060.5 m2 g-1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g-1 and 38.9 mg g-1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar.

13.
Small ; 17(48): e2006851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909946

RESUMO

Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.


Assuntos
Grafite , Catálise , Compostos de Nitrogênio , Fotossíntese
14.
Environ Sci Pollut Res Int ; 28(23): 29157-29176, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550559

RESUMO

This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g-1.h-1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.


Assuntos
Óxido de Alumínio , Metano , Dióxido de Carbono , Cobalto , Níquel
15.
Environ Sci Pollut Res Int ; 28(14): 17587-17601, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33403630

RESUMO

This study investigated the coagulation performance of titanium tetrachloride (TiCl4) for leachate treatment and preparation of titanium oxide (TiO2) from generated sludge through calcination process at different temperatures and times. TiCl4 with chitosan as coagulant aid employed to perform coagulation process on Alor Ponhsu Landfill leachate. Further calcination process was done to synthesize TiO2 from produced sludge for photocatalytic applications. The studied factors included pH, TiCl4 dosage, and chitosan dosage. The results indicated that maximum reduction in suspended solids was 92.02% at pH 4, 1200 mg/L TiCl4, and 250 mg/L chitosan addition, and maximum reduction in chemical oxygen demand was 71.92% at experimental condition of 1200 mg/L TiCl4 and 500 mg/L chitosan with pH 10. The maximum and minimum band gaps of prepared TiO2 achieved at 3.35 eV and 2.75 eV, respectively. Morphology and phase analysis of prepared TiO2 characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). The XRD spectrums showed the anatase phase at lower calcination temperature and the rutile phase at elevated temperature. The photocatalysis activity of produced TiO2 investigated under UV irradiation and showed almost fast degradation similar to commercial TiO2. The results indicated that TiO2 powder was successfully prepared from generated sludge from TiCl4 coagulation for photocatalytic applications.


Assuntos
Esgotos , Poluentes Químicos da Água , Catálise , Titânio , Difração de Raios X
16.
Environ Res ; 188: 109828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798947

RESUMO

This study aims to produce hydrochar from high-ash low-lipid Chlorella vulgaris biomass via hydrothermal carbonization (HTC) process. The effects of hydrothermal temperature and retention time with respect to the physicochemical properties of hydrochar were studied in the range of 180-250 °C and 0.5-4 h, respectively. It was found that the hydrothermal temperature had resulted in a significant reduction of hydrochar yield as compared to the retention time. The raw microalgal biomass was successfully converted into an energy densified hydrochar via an optimized HTC reaction, with higher heating value (HHV) of 24.51 kJ/g, which was approximately two-times higher than that of raw biomass. In addition, the overall carbon recovery rate and energy yield were in the range of 53.2-86.4% and 46.9-76.6%, respectively. The high quality of the produced hydrochar was further supported by the plot of van Krevelen diagram and combustion behaviour analysis. Besides, the aqueous phase collected from HTC process could be further used as nutrients source to cultivate C. vulgaris, in which up to 70% of the biomass yield could be attained as compared to the control cultivation condition. The reusability of the aqueous phase collected from HTC process as an alternative nutrients source to cultivate microalgal indicated the feasibility and positive integration of HTC process in microalgal biofuel processing chain.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Carbono , Lipídeos , Temperatura
17.
Chem Asian J ; 15(19): 2902-2924, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32779360

RESUMO

The combination of exceptional functionalities offered by 3D graphene-based macrostructures (GBMs) has attracted tremendous interest. 2D graphene nanosheets have a high chemical stability, high surface area and customizable porosity, which was extensively researched for a variety of applications including CO2 adsorption, water treatment, batteries, sensors, catalysis, etc. Recently, 3D GBMs have been successfully achieved through few approaches, including direct and non-direct self-assembly methods. In this review, the possible routes used to prepare both 2D graphene and interconnected 3D GBMs are described and analyzed regarding the involved chemistry of each 2D/3D graphene system. Improvement of the accessible surface of 3D GBMs where the interface exchanges are occurring is of great importance. A better control of the chemical mechanisms involved in the self-assembly mechanism itself at the nanometer scale is certainly the key for a future research breakthrough regarding 3D GBMs.

18.
Environ Sci Pollut Res Int ; 27(34): 43011-43027, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725565

RESUMO

Several multi-walled carbon nanotubes supported Ni-Ce catalysts were synthesized, and their performance in carbon dioxide reforming of methane (CDRM) for syngas production was evaluated. The attachment of Ni-Ce nanoparticles to the functionalized carbon nanotube (fCNT) support was carried out using four synthesis routes, i.e., impregnation (I), sol-gel (S), co-precipitation (C), and hydrothermal (H) methods. Results indicated that synthesis method influences the properties of the NiCe/fCNT catalysts in terms of homogeneity of metal dispersion, size of crystallites, and metal-support interaction. The activity of the catalysts followed the order of NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I). The NiCe/fCNT(H) catalyst exhibited the highest catalytic activity with CH4 and CO2 conversions of 92 and 96%, respectively, and resulted in syngas product with consistent H2/CO ratio of 0.91 at reaction temperature of 800 °C without notable deactivation up to 30 h of reaction. Moreover, the growth of carbon on the spent catalyst was only 2% with deposition rate of 4.08 mg/gcat·h; this was plausibly due to the well-dispersed distribution of nanoparticles on fCNT surface and abundant presence of oxygenated groups on the catalyst surface.


Assuntos
Nanopartículas , Nanotubos de Carbono , Dióxido de Carbono , Metano , Níquel
19.
Chemistry ; 26(44): 9710-9748, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511824

RESUMO

Photocatalytic CO2 reduction is a revolutionary approach to solve imminent energy and environmental issues by replicating the ingenuity of nature. The past decade has witnessed an impetus in the rise of two-dimensional (2D) structure materials as advanced nanomaterials to boost photocatalytic activities. In particular, the use of 2D carbon-based materials is deemed as highly favorable, not only as a green material choice, but also due to their exceptional physicochemical and electrical properties. This Review article presents a diverse range of alterations and compositions derived from 2D carbon-based nanomaterials, mainly graphene and graphitic carbon nitride (g-C3 N4 ), which have remarkably ameliorated the photocatalytic CO2 performance. Herein, the rational design of the photocatalyst systems with consideration of the aspect of dimensionality and the resultant heterostructures at the interface are systematically analyzed to elucidate an insightful perspective on this pacey subject. Finally, a conclusion and outlook on the limitations and prospects of the cutting-edge research field are highlighted.

20.
ACS Appl Mater Interfaces ; 12(24): 26991-27000, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32433865

RESUMO

The photocatalytic conversion of CO2 to energy-rich CH4 solar fuel is an ideal strategy for future energy generation as it can resolve global warming and the imminent energy crisis concurrently. However, the efficiency of this technology is unavoidably hampered by the ineffective generation and utilization of photoinduced charge carriers. In this contribution, we report a facile in situ topotactic transformation approach where {001}-faceted BiOBr nanosheets (BOB-NS) were employed as the starting material for the formation of single-crystalline ultrathin Bi2WO6 nanosheets (BWO-NS). The as-obtained BWO-NS not only preserved the advantageous properties of the 2D nanostructure and predominantly exposed {001} facets but also possessed enlarged specific surface areas as a result of sample thickness reduction. As opposed to the commonly observed bandgap broadening when the particle sizes decrease to an ultrathin nanoscale owing to the quantum size effect, the developed BWO-NS exhibited a fascinating bandgap narrowing compared to those of pristine Bi2WO6 nanoplates (BWO-P) synthesized from a conventional one-step hydrothermal approach. Moreover, the electronic band positions of BWO-NS were modulated as a result of ion exchange for the reconstruction of the energy bands, where BWO-NS demonstrated significant upshifting of CB and VB levels; these are beneficial for photocatalytic reduction applications. This propitious design of BWO-NS through integrating the merits of BOB-NS caused BWO-NS to exhibit substantial 2.6 and 9.3-fold enhancements of CH4 production over BOB-NS and BWO-P, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA