Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409430, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088419

RESUMO

The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L-tryptophan to 4-nitro-L-tryptophan, using nitric oxide and dioxygen as co-substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)-peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2-•)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4-nitroindole, the product analogous to that obtained with TxtE. Moreover, 15N and 18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.

2.
Biosensors (Basel) ; 12(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36290966

RESUMO

The yellow rust of wheat (caused by Puccinia striiformis f. sp. tritici) is a devastating fungal infection that is responsible for significant wheat yield losses. The main challenge with the detection of this disease is that it can only be visually detected on the leaf surface between 7 and 10 days after infection, and by this point, counter measures such as the use of fungicides are generally less effective. The hypothesis of this study is to develop and use a compact electrochemical-based biosensor for the early detection of P. striiformis, thus enabling fast countermeasures to be taken. The biosensor that was developed consists of three layers. The first layer mimics the wheat leaf surface morphology. The second layer consists of a sucrose/agar mixture that acts as a substrate and contains a wheat-derived terpene volatile organic compound that stimulates the germination and growth of the spores of the yellow rust pathogen P. s. f. sp. tritici. The third layer consists of a nonenzymatic glucose sensor that produces a signal once invertase is produced by P. striiformis, which comes into contact with the second layer, thereby converting sucrose to glucose. The results show the proof that this innovative biosensor can enable the detection of yellow rust spores in 72 h.


Assuntos
Basidiomycota , Técnicas Biossensoriais , Fungicidas Industriais , Compostos Orgânicos Voláteis , Puccinia , beta-Frutofuranosidase , Ágar , Doenças das Plantas/microbiologia , Triticum/microbiologia , Sacarose , Terpenos , Glucose
3.
J Appl Microbiol ; 133(4): 2445-2456, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35835588

RESUMO

AIMS: This study sought to assess the volatile organic compound (VOC) profiles of ampicillin-resistant and -susceptible Escherichia coli to evaluate whether VOC analysis may be utilized to identify resistant phenotypes. METHODS AND RESULTS: An E. coli BL21 (DE3) strain and its pET16b plasmid transformed ampicillin-resistant counterpart were cultured for 6 h in drug-free, low- and high-concentrations of ampicillin. Headspace analysis was undertaken using thermal desorption-gas chromatography-mass spectrometry. Results revealed distinct VOC profiles with ampicillin-resistant bacteria distinguishable from their susceptible counterparts using as few as six compounds. A minimum of 30 compounds (fold change >2, p ≤ 0.05) were differentially expressed between the strains across all set-ups. Furthermore, three compounds (indole, acetoin and 3-methyl-1-butanol) were observed to be significantly more abundant (fold change >2, p ≤ 0.05) in the resistant strain compared to the susceptible strain both in the presence and in the absence of drug stress. CONCLUSIONS: Results indicate that E. coli with acquired ampicillin resistance exhibit an altered VOC profile compared to their susceptible counterpart both in the presence and in the absence of antibiotic stress. This suggests that there are fundamental differences between the metabolisms of ampicillin-resistant and -susceptible E. coli which may be detected by means of VOC analysis. SIGNIFICANCE AND IMPACT OF THE STUDY: Our findings suggest that VOC profiles may be utilized to differentiate between resistant and susceptible bacteria using just six compounds. Consequently, the development of machine-learning models using VOC signatures shows considerable diagnostic applicability for the rapid and accurate detection of antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Compostos Orgânicos Voláteis , Acetoína , Ampicilina/farmacologia , Resistência a Ampicilina/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Humanos , Indóis , Testes de Sensibilidade Microbiana , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA