Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1092, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212527

RESUMO

In this study, a novel proton-conducting polymer electrolyte membrane based on a mixture of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) (1:1) mixed with different ratios of graphene oxide (GO) and plasma-treated was successfully synthesized. Dielectric barrier dielectric (DBD) plasma was used to treat the prepared samples at various dose rates (2, 4, 6, 7, 8, and 9 min) and at fixed power input (2 kV, 50 kHz). The treated samples (PVA/PVP:GO wt%) were soaked in a solution of styrene and tetrahydrofuran (70:30 wt%) with 5 × 10-3 g of benzoyl peroxide as an initiator in an oven at 60 °C for 12 h and then sulfonated to create protonic membranes (PVA/PVP-g-PSSA:GO). The impacts of graphene oxide (GO) on the physical, chemical, and electrochemical properties of plasma-treated PVA/PVP-g-PSSA:x wt% GO membranes (x = 0, 0.1, 0.2, and 0.3) were investigated using different techniques. SEM results showed a better dispersion of nanocomposite-prepared membranes; whereas the AFM results showed an increase in total roughness with increasing the content of GO. FTIR spectra provide more information about the structural variation arising from the grafting and sulfonation processes to confirm their occurrence. The X-ray diffraction pattern showed that the PVA/PVP-g-PSSA:x wt% GO composite is semi-crystalline. As the level of GO mixing rises, the crystallinity of the mixes decreases. According to the TGA curve, the PVA/PVP-g-PSSA:x wt% GO membranes are chemically stable up to 180 °C which is suitable for proton exchange membrane fuel cells. Water uptake (WU) was also measured and found to decrease from 87.6 to 63.3% at equilibrium with increasing GO content. Ion exchange capacity (IEC) was calculated, and the maximum IEC value was 1.91 meq/g for the PVA/PVP-g-PSSA: 0.3 wt% GO composite membrane. At room temperature, the maximum proton conductivity was 98.9 mS/cm for PVA/PVP-g-PSSA: 0.3 wt% GO membrane. In addition, the same sample recorded a methanol permeability of 1.03 × 10-7 cm2/s, which is much less than that of Nafion NR-212 (1.63 × 10-6 cm2/s). These results imply potential applications for modified polyelectrolytic membranes in fuel cell technology.

2.
Sci Rep ; 13(1): 6435, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081088

RESUMO

The preparation of adsorbents plays a vital role in the adsorption method. In particular, many adsorbents with high specific surface areas and unique shapes are essential for the adsorption strategy. A Zn-Mg-Al/layer double hydroxide (LDH) was designed in this study using a simple co-precipitation process. Adsorbent based on Zn-Mg-Al/LDH was used to remove crystal violet (CV) from the wastewater. The impacts of the initial dye concentration, pH, and temperature on CV adsorption performance were systematically examined. The adsorbents were analyzed both before and after adsorption using FTIR, XRD, and SEM. The roughness parameters and surface morphologies of the produced LDH were estimated using 3D SEM images. Under the best conditions (dose of adsorbent = 0.07 g and pH = 9), the maximum adsorption capacity has been achieved. Adsorption kinetics studies revealed that the reaction that led to the adsorption of CV dye onto Zn-Mg-Al/LDH was a pseudo-second-order model. Additionally, intraparticle diffusion suggests that Zn-Mg-Al/LDH has a fast diffusion constant for CV molecules (0.251 mg/(g min1/2)). Furthermore, as predicted by the Langmuir model, the maximal Zn-Mg-Al/LDH adsorption capacity of CV was 64.80 mg/g. The CV dimensionless separation factor (RL) onto Zn-Mg-Al/LDH was 0.769, indicating that adsorption was favorable. The effect of temperature was performed at 25, 35, and 45 °C in order to establish the thermodynamic parameters ∆Ho, ∆So, and ∆Go. The computed values indicated exothermic and spontaneous adsorption processes. The study presented here might be used to develop new adsorbents with enhanced adsorption capabilities for the purpose of protecting the water environment.

3.
Sci Rep ; 12(1): 19354, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369455

RESUMO

Finding suitable non-expensive electrocatalyst materials for methanol oxidation is a significant challenge. Waste valorization of spent wastewater nanoadsorbents is a promising route toward achieving circular economy guidelines. In this study, the residual of layered double hydroxide (LDH) can be used as an electrocatalyst in direct methanol fuel cells as a novel approach. The Co-Ni-Zn-Fe LDH was prepared by the co-precipitation method followed by the adsorption of methyl orange (MO). Moreover, the spent adsorbent was calcined at different temperatures (200, 400, and 600 °C) to be converted to the corresponding mixed metal oxides (MMO). The prepared samples were characterized using XRD, FTIR, HRTEM, zeta potential, and hydrodynamic size measurements. The spent adsorbent was tested as an electro-catalyst for direct methanol electro-oxidation. The spent LDH/MO adsorbent showed a maximum current density of 6.66 mA/cm2 at a 50 mV/s scan rate and a 1 M methanol concentration. The spent MMO/MO adsorbent showed a maximum current density of 8.40 mA/cm2 at a 200 °C calcination temperature, 50 mV/s scan rate, and a 3 M methanol concentration. Both samples show reasonable stability over time, as indicated by the chronoamperometric response. Further nanoengineering of used nanoadsorbents could be a promising path to repurposing these wastes as electro-oxidation catalysts.


Assuntos
Metanol , Águas Residuárias , Hidróxidos , Óxidos , Zinco
4.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235977

RESUMO

Polymer electrolyte membrane (PEM) fuel cells have the potential to reduce our energy consumption, pollutant emissions, and dependence on fossil fuels. To achieve a wide range of commercial PEMs, many efforts have been made to create novel polymer-based materials that can transport protons under anhydrous conditions. In this study, cross-linked poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) membranes with varying alumina (Al2O3) content were synthesized using the solvent solution method. Wide-angle X-ray diffraction (XRD), water uptake, ion exchange capacity (IEC), and proton conductivity were then used to characterize the membranes. XRD results showed that the concentration of Al2O3 affected the degree of crystallinity of the membranes, with 0.7 wt.% Al2O3 providing the lowest crystallinity. Water uptake was discovered to be dependent not only on the Al2O3 group concentration (SSA content) but also on SSA, which influenced the hole volume size in the membranes. The ionic conductivity measurements provided that the samples were increased by SSA to a high value (0.13 S/m) at 0.7 wt.% Al2O3. Furthermore, the ionic conductivity of polymers devoid of SSA tended to increase as the Al2O3 concentration increased. The positron annihilation lifetimes revealed that as the Al2O3 concentration increased, the hole volume content of the polymer without SSA also increased. However, it was densified with SSA for the membrane. According to the findings of the study, PVA/PEG/SSA/0.7 wt.% Al2O3 might be employed as a PEM with high proton conductivity for fuel cell applications.

5.
Polymers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616457

RESUMO

A casting technique was used to prepare poly(vinyl alcohol) (PVA) blend polymers with different concentrations of Nylon-6,6 to increase the free-volume size and control the ionic conductivity of the blended polymers. The thermal activation energy for some blends is lower than that of pure polymers, indicating that their thermal stability is somewhere in between that of pure Nylon-6,6 and pure PVA. The degree of crystallinity of the blend sample (25.7%) was lower than that of the pure components (41.0 and 31.6% for pure Nylon-6,6 and PVA, respectively). The dielectric properties of the blended samples were investigated for different frequencies (50 Hz-5 MHz). The σac versus frequency was found to obey Jonscher's universal power law. The calculated values of the s parameter were increased from 0.53 to 0.783 for 0 and 100 wt.% Nylon-6,6, respectively, and values less than 1 indicate the hopping conduction mechanism. The barrier height (Wm) was found to increase from 0.33 to 0.72 for 0 and 100 wt.% Nylon-6,6, respectively. The ionic conductivity decreases as the concentration of Nylon-6,6 is blended into PVA because increasing the Nylon-6,6 concentration reduces the number of mobile charge carriers. Positron annihilation lifetime (PAL) spectroscopy was used to investigate the free volume's nanostructure. The hole volume size grows exponentially with the concentration of Nylon-6,6 mixed with PVA. The Nylon-6,6/PVA blends' free-volume distribution indicates that there is no phase separation in the blended samples. Mixing PVA and Nylon-6,6 resulted in a negative deviation (miscible blends), as evidenced by the interaction parameter's negative value. The strong correlation between the free-volume size and other macroscopic properties like ionic conductivity suggests that the free-volume size influences these macroscopic properties.

6.
Phys Chem Chem Phys ; 20(44): 28287-28299, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398493

RESUMO

Two processes for crosslinking polyvinyl alcohol (PVA) with sulfosuccinic acid (SSA) and thermal crosslinking were used to fabricate a proton exchange membrane (PEM). Such PEMs are used in different fields involving fuel cell applications. The crosslinking reaction between PVA and SSA was confirmed using Fourier-transform infrared (FTIR) spectroscopy. The characterization of the prepared membranes, namely, ion exchange capacity (IEC), thermal analyses, water uptake, and ionic conductivity, was carried out. The IEC of the prepared membranes was found to be between 0.084 and 2.086 mmol g-1, resulting in an essential increase in the ionic conductivity. It was observed that the ionic conductivity was in the range of 0.003-0.023 S cm-1, depending on both temperature and SSA content. From the thermogravimetric analysis (TGA) results, it was revealed that the thermal stability of the crosslinked membranes improved. Moreover, water uptake decreased with increasing SSA content. Positron annihilation lifetime spectroscopy (PALS) was used to study the microstructure of the PVA/SSA membranes and their distribution at different ambient temperatures and relative humidity (RH) values. At room temperature, no significant change was observed in the free-volume holes up to 15 wt% SSA; thereafter, the size of the free-volume holes increased with the SSA content. The PALS results show that at different humidity values, the size of the free-volume holes for crosslinked PVA/SSA membranes is lower than those for Nafion membranes, i.e., the gas permeability for the prepared PVA/SSA membranes is less than that for the Nafion membrane. In addition, a strong correlation between the water uptake, ionic conductivity, tensile strength, and free-volume holes was observed.

7.
J Phys Chem B ; 118(22): 6007-14, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24815092

RESUMO

Positron annihilation lifetime spectroscopy (PALS) is applied to a series of bis(aniline)fluorene and bis(xylidine)fluorene-based cardo polyimide and bis(phenol)fluorene-based polysulfone membranes. It was found that favorable amounts of positronium (Ps, the positron-electron bound state) form in cardo polyimides with the 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) moiety and bis(phenol)fluorene-based cardo polysulfone, but no Ps forms in most of the polyimides with pyromellitic dianhydride (PMDA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BTDA) moieties. A bis(xylidine)fluorene-based polyimide membrane containing PMDA and BTDA moieties exhibits a little Ps formation but the ortho-positronium (o-Ps, the triplet state of Ps) lifetime of this membrane anomalously shortens with increasing temperature, which we attribute to chemical reaction of o-Ps. Correlation between the hole size (V(h)) deduced from the o-Ps lifetime and diffusion coefficients of O2 and N2 for polyimides with the 6FDA moiety and cardo polysulfone showing favorable Ps formation is discussed based on free volume theory of gas diffusion. It is suggested that o-Ps has a strong tendency to probe larger holes in rigid chain polymers with wide hole size distributions such as those containing cardo moieties, resulting in deviations from the previously reported correlations for common polymers such as polystyrene, polycarbonate, polysulfone, and so forth.

8.
J Phys Chem B ; 118(15): 4194-200, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24467662

RESUMO

Slow positron beam and optical absorption measurements are carried out to study structural defects and positronium formation in 40 keV B(+)-implanted polymethylmethacrylate (B:PMMA) with ion doses from 6.25 × 10(14) to 5.0 × 10(16) ions/cm(2). Detailed depth-selective information on defects in implanted samples was obtained by measuring of Doppler broadening of positron annihilation γ rays as a function of incident positron energy and these experimental results were compared with SRIM (stopping and range of ions in matter) simulation results. Two general processes, appearance of free radicals at lower ion doses (<10(16) ions/cm(2)) and carbonization at higher ion doses (>10(16) ions/cm(2)), are considered from the Doppler S-E and W-E dependences in the framework of the concept of defects formation during radiation damage of polymer structure. Probabilities of ortho-positronium (o-Ps) formation are analyzed using S-W plot and slow positron annihilation lifetime measurements. Dose dependence of o-Ps lifetime τ3 and intensity I3 at the incident positron energy of 2.15 keV correlates well with the dose dependence of S-parameter and seems to account for the existence of the expected two processes, i.e., scission of polymer chains and appearance of free radicals preceding the aggregation of the clusters resulting in the formation of network of conjugated bonds at lower ion doses and carbonization at higher ion doses. The increase of optical absorption observed with increasing ion implantation dose also suggests a formation of carbonaceous phase in the ion-irradiated PMMA.


Assuntos
Boro/química , Elétrons , Polimetil Metacrilato/química , Estrutura Molecular
9.
Phys Chem Chem Phys ; 15(27): 11494-500, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23748745

RESUMO

To understand the relationship between surface morphology and proton conduction of polymer electrolyte thin films, perfluorinated ionomer Nafion® thin films were prepared on different substrates such as glassy carbon (GC), hydrophilic-GC (H-GC), and platinum (Pt) as models for the ionomer film within a catalyst layer. Atomic force microscopy coupled with an electrochemical (e-AFM) technique revealed that proton conduction decreased with film thickness; an abrupt decrease in proton conductance was observed when the film thickness was less than ca. 10 nm on GC substrates in addition to a significant change in surface morphology. Furthermore, thin films prepared on H-GC substrates with UV-ozone treatment exhibited higher proton conduction than those on untreated GC substrates. However, Pt substrates exhibited proton conduction comparable to that of GCs for films thicker than 20 nm; a decrease in proton conduction was observed at ∼5 nm thick film but was still much higher than for carbon substrates. These results indicate that the number of active proton-conductive pathways and/or the connectivity of the proton path network changed with film thickness. The surface morphology of thinner films was significantly affected by the film/substrate interface and was fundamentally different from that of the bulk thick membrane.


Assuntos
Polímeros de Fluorcarboneto/química , Prótons , Carbono/química , Técnicas Eletroquímicas , Eletrólitos/química , Polímeros de Fluorcarboneto/síntese química , Microscopia de Força Atômica , Tamanho da Partícula , Platina/química , Propriedades de Superfície
10.
Phys Chem Chem Phys ; 15(5): 1518-25, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23238425

RESUMO

Solutions of Nafion® with an ion exchange capacity (IEC) of 0.91 meq g(-1), which are on the verge of the formation of SO(3)H nanoclusters, were spin coated on silicon (Si), glassy carbon (GC) and platinum/silicon (Pt/Si) substrates to form films of up to 256 nm thickness. Nanostructure of the films was studied using Doppler broadening of annihilation radiation (DBAR), positron annihilation lifetime (PAL), X-ray photoelectron spectroscopy (XPS), an atomic force microscope (AFM) and contact angle measurements. Contact angles as low as 10 degrees indicate that the surface of dry ultrathin Nafion® films on Si is highly hydrophilic. XPS data of 10 nm thick, ultrathin film on Si show that oxygen concentration is enhanced and the SO(3)H group concentration, in other words, IEC on the surface is much higher than other films. The S parameter measured by DBAR of an ultrathin Nafion® film on Si is much higher than that of the films on the other substrates. We consider that a large number of hydrophilic, reversed micelle like SO(3)H groups are on the surface of the ultrathin Nafion® film on Si but not on the surface of other films. Positrons implanted into the film are trapped by the SO(3)H clusters, annihilating with the electrons of oxygen and exhibit the high S parameter. The SO(3)H concentration on the surface of thin Nafion® films on GC and Pt/Si substrates may not be so high as the threshold for the formation of a large number of SO(3)H clusters. Positrons implanted into the films annihilate mostly with fluorine atoms, resulting in a low S parameter. The film-substrate interaction plays an essential role in nanostructuring of Nafion® thin films, which may also be the case for Nafion® on the catalysts of polymer electrolyte fuel cells.

11.
J Phys Chem B ; 113(17): 5698-701, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19351120

RESUMO

We measured the yield of positronium (Ps) in sulfonated aromatic proton conducting membranes for the polymer electrolyte fuel cell (PEFC) with and without -SO(2)- in their chemical structures by positron annihilation lifetime spectroscopy (PALS). It was observed that Ps formation is almost totally inhibited in the polymers without -SO(2)- such as sulfonated poly(ether ether ketone) (SPEEK). On the other hand Ps favorably forms in those with -SO(2)- as sulfonated polyether sulfone (SPES), which is due to the anti-inhibition effect of -SO(2)-. The high probability of Ps formation in these polymers enables the study of the free volume and the mechanism of gas permeation by PALS.

12.
J Phys Chem B ; 113(8): 2247-52, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19186954

RESUMO

Variations of the free volume, O2 permeability, and structure of the Nafion membrane upon ion exchange of H+ with Na+ and K+ were studied. The free volume was quantified using the positron annihilation lifetime (PAL) technique, whereas the polymer structure was characterized by dynamic mechanical analysis (DMA), nanoindentation, and wide-angle X-ray diffraction (WAXD). It was found that the ion exchange significantly expands the free volume and at the same time decreases the O2 permeability. This is opposed to the simple free volume model in which the structure with less open volume is more amenable to lower permeability. Comparison of experimental data collected by different techniques revealed that not only the free volume but also the polymer stiffness plays an essential role in O2 permeation.

13.
Appl Radiat Isot ; 65(3): 328-34, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17049258

RESUMO

The effect of alpha-particles on CR-39, a material used in solid state nuclear track detectors (SSNTDs), has been investigated using the positron annihilation lifetime (PAL) technique. The samples were irradiated using a (238)Pu alpha-source of energy ranging from 1 to 5 MeV and with different doses ranging from 0 to 57.87 mGy. The ortho-positronium (o-Ps) lifetime, tau(3), shows a slight increase as the irradiation dose increases, while a rapid change in the o-Ps intensity, I(3) at 10 mGy was found. In addition, the PAL parameters (tau(3), I(3)) have been studied as a function of the energy of alpha-particles. The obtained results indicate that the o-Ps lifetime increases slightly with increasing energy of the alpha-particle. On the other hand, the o-Ps intensity decreases exponentially with increasing alpha-particle energy, plateaus, and finally increases. The data show that the track diameter increases with decreasing energy of the alpha-particle, while the track density increases with increasing the irradiation dose. A correlation between the track diameter and the o-Ps hole diameter was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA