RESUMO
Research in the synthesis of Schiff base ligands and their metal complexes using olive leaf extracts as a green reducing agent is an exciting area of study. In this research, a Schiff base ligand is created by combining 1-hydroxy-2-naphthaldehyde and amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide. The synthetic Schiff base is then utilized for the production of a Cd(II) nano complex for the first time with olive leaf extracts serving as the green reducing agent. The extract is obtained by harvesting, drying, and grinding the olive leaves. Various analytical techniques, including 1H NMR, 13C NMR spectroscopy, scanning electron microscope (SEM), and conductivity studies, are employed to analyze the Schiff base and its Cd(II) complex. Quantum chemical calculations are also conducted to explore the different conformers of the Cd(II) complex and their stabilities, shedding light on the synthesis pathways of the Schiff base ligand and Cd(II) complex. Extensive DFT-based geometry optimizations and frequency calculations are carried out for 1-hydroxy-2-naphthaldehyde,amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide, the Schiff base ligand, and the corresponding Cd(II) complex. Experimental and theoretical analyses confirm the presence of the azomethine (-HC = N-) group in the Schiff base and validate the formation of the Cd(II) complex in a 2:1 metal-to-ligand ratio through physicochemical characterization methods, highlighting the nanoscale structure of the complex. Combining thorough physicochemical investigations with molecular modeling simulations and the sustainable synthesis of metal complexes, valuable insights into their properties and potential applications in catalysis and drug delivery are obtained.
Assuntos
Cádmio , Olea , Extratos Vegetais , Folhas de Planta , Olea/química , Folhas de Planta/química , Extratos Vegetais/química , Cádmio/química , Bases de Schiff/química , Química Verde/métodos , Complexos de Coordenação/química , Complexos de Coordenação/síntese químicaRESUMO
An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.
Assuntos
Capsaicina , Diclofenaco , Salicilatos , Pele , Capsaicina/análise , Capsaicina/análogos & derivados , Diclofenaco/análise , Cromatografia Líquida de Alta Pressão/métodos , Salicilatos/análise , Pele/química , Animais , Coelhos , Cromatografia de Fase Reversa/métodos , Dietilaminas/químicaRESUMO
Favipiravir (FVP) is introduced as a promising newly developed antiviral drug against the coronavirus disease 2019 (COVID-19). Therefore, the accurate determination of FVP is of great significance for quality assessment and clinical diagnosis. Herein, a novel electrochemical sensing platform for FVP based on gold nanoparticles anchored conductive carbon black (Au@CCB) modified graphite nanopowder flakes paste electrode (GNFPE) was constructed. Morphological and nanostructure properties of Au@CCB have been investigated by TEM, HRTEM, and EDX methods. The morphology and electrochemical properties of Au@CCB/GNFPE were characterized by SEM, cyclic voltammetry (CV), and EIS. The Au@CCB nanostructured modified GNFPE exhibited strong electro-catalytic ability towards the oxidation of FVP. The performance of the fabricated Au@CCB/GNFPE was examined by monitoring FVP concentrations in the absence and presence of co-administered drug paracetamol (PCT) by AdS-SWV. It was demonstrated that the proposed sensor exhibited superior sensitivity, stability, and anti-interference capability for the detection of FVP. The simultaneous determination of a binary mixture containing FVP and the co-administered drug PCT using Au@CCB/GNFPE sensor is reported for the first time. Under optimized conditions, the developed sensor exhibited sensitive voltammetric responses to FVP and PCT with low detection limits of 7.5 nM and 4.3 nM, respectively. The sensing electrode was successfully used to determine FVP and PCT simultaneously in spiked human plasma and pharmaceutical preparations, and the findings were satisfactory. Finally, the fabricated sensor exhibited high sensitivity for simultaneous detection of FVP and PCT in the presence of ascorbic acid in a real sample.
RESUMO
Novel biomass-derived carbon dots co-doped with nitrogen and sulfur were fabricated through facile and simple synthetic method from manufactured milk powder and methionine as precursors. The as-fabricated platform was used for ratiometric fluorescence sensing of Cu (II) and bisphosphonate drug risedronate sodium. The sensing platform is based on oxidation of o-phenylenediamine by Cu (II) to form 2, 3-diaminophenazine (oxidized product) with an emission peak at 557 nm. The resultant product quenched the fluorescence emission of as-fabricated carbon dots at 470 nm through Förster resonance energy transfer (FRET) and inner-filter effect (IFE). Upon addition of risedronate sodium, the formation of 2, 3-diaminophenazine was decreased as a result of Cu (II) chelation with risedronate sodium, recovering the fluorescence emission of carbon dots. The ratio of fluorescence at 470 nm and 557 nm was measured as a function of Cu (II) and risedronate sodium concentrations. The proposed sensing platform sensitively detected Cu (II) and risedronate sodium in the range of 0.01-55 µM and 5.02-883 µM with LODs (S/N = 3) of 0.003 µM and 1.48 µM, respectively. The sensing platform exhibited a good selectivity towards Cu (II) and risedronate sodium. The sensing system was used to determine Cu (II) and risedronate sodium in different sample matrices with recoveries % in the range of 99-103 % and 97.4-103.8 %, and RSDs % in the range of 1.5-3.0 % and 1.8-3.6 %, respectively.
Assuntos
Pontos Quânticos , Corantes Fluorescentes , Carbono , Nitrogênio , Biomassa , Ácido Risedrônico , Espectrometria de Fluorescência/métodos , Laticínios , EnxofreRESUMO
Pentoxyverine citrate (PEN-citrate) is an antitussive (cough suppressant) drug used for cough associated with illnesses like common cold. In this work, PEN-citrate is quantified by applying a simple, direct and accurate spectrophotometric method in pure form, pharmaceutical formulation (Cabella®, 2.13â¯mg/mL) and human serum samples. The formation of a stable yellow ion-pair with sulfonephthalein dyes; bromocresol green (BCG), bromophenol blue (BPB), bromothymol blue (BTB), bromocresol purple (BCP), bromochlorophenol blue (BChPB) and bromoxylenol blue (BXB), in three nonpolar solvents (chloroform, dichloromethane, acetonitrile) is used as the basis for this method. This is the first assay method reported for the quantification of PEN-citrate using the sulfonephthaleins as coloring agents. Diverse parameters were investigated in order to optimize the calibration curve conditions. The strategy was validated with respect to linearity range, precision, accuracy, specificity, robustness and limits of detection (LOD) and quantification (LOQ). In addition, solvents of different polarities were utilized to investigate the color reaction, light absorption and to allow for increasing the method sensitivity. Beer's law is obeyed over a wide concentration range (up to 42.05⯵g/mL in case of BTB method). LOD and LOQ values reached 0.22 and 0.72⯵g/mL, respectively, upon using BChPB. The relative standard deviation (%RSD) was ≤1.91% while correlation coefficient values (r) were ≥ 0.9974. High molar absorptivity values and low values of Sandell's sensitivity were obtained indicating that the proposed methods are highly sensitive. The validated methods were applied to the analysis of PEN-citrate in the dosage form and human serum samples where the drug was successfully resolved from the pharmaceutical additives and serum components with recoveries ≥98.98%.
Assuntos
Antitussígenos/sangue , Corantes/química , Ciclopentanos/sangue , Fenolsulfonaftaleína/química , Antitussígenos/análise , Ciclopentanos/análise , Humanos , Limite de Detecção , Solventes , Espectrofotometria/métodos , ComprimidosRESUMO
Simeprevir sodium (SMV); a novel hepatitis C inhibitor, quells hepatitis C viral replication by binding to and repressing the protease, hepatitis C infection (HCV) NS3/4A. In this way, it is known as a prompt acting antiviral agent. Calibration curves of SMV were built in various solvents; ethanol, methanol, acetonitrile, chloroform and dichloromethane. It is obeyed up to 60.0⯵g/mL; in all solvents at two maximum wavelengths (280 and 327â¯nm). Several investigations show that, SMV might be present in a mixture of Sofosbuvir (SOF) and/or Ledipasvir (LDP). So far as that is concerned, H-point standard addition strategy (HPSAS) is made to identify it in binary or ternary mixtures. Recovery studies are in the prevalent range (93.0-107.0%) with relative standard deviation <1.5%. A correlation between the developed techniques is carried out and it demonstrates that these strategies are effectively applied for the simultaneous analysis of SMV, SOF and LDP in several synthetic samples and pharmaceutics. Statistical treatment of the acquired data is carried out against a newly published HPLC technique using F- and t-treatments.
Assuntos
Antivirais/análise , Inibidores de Proteases/análise , Simeprevir/análise , Espectrofotometria Ultravioleta/métodos , Artefatos , Benzimidazóis/análise , Calibragem , Misturas Complexas/análise , Fluorenos/análise , Hepacivirus/enzimologia , Reprodutibilidade dos Testes , Sofosbuvir/análise , Espectrofotometria Ultravioleta/estatística & dados numéricosRESUMO
Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary arteries, peripheral vascular and cerebrovascular diseases. A spectrophotometric method was developed for clopidogrel bisulfate (CLOP·H2SO4) determination using bromocresol green (BCG) as an ion-pairing agent. To explore the binding nature of CLOP·H2SO4 with BCG at a molecular level, quantum chemical calculations have been performed. DFT based full geometry optimization has been carried out for BCG and clopidogrel in basic (CLOP) and protonated (CLOP+) forms as well as for BCG ion-pairs with CLOP and CLOP·H2SO4. The DFT calculations referred to the stability of the BCG-CLOP+ ion-pair and its spontaneous formation reaction from BCG and CLOP·H2SO4 compared to the BCG-CLOP-ion-pair. Furthermore, the UV-visible spectra and their corresponding excited states and electronic transitions for BCG, BCG-CLOP+ ion-pair, and BCG-CLOP ion-pair have been investigated. These spectra provided a molecular level understanding of the nature of the different intra-molecular and intermolecular electronic transitions in the BCG ion-pairs with CLOP+. Moreover, the quantitative analysis based on extracting a yellow-formed ion-pair into chloroform from aqueous medium was carried out. The ion-pair exhibits an absorption maximum at 413 nm. The optimum conditions of the reactions were studied experimentally and optimized. The calibration graph shows that CLOP·H2SO4 can be determined up to 100.0 µg mL-1 with detection limit (LOD) of 0.57 µg mL-1 and quantification limit (LOQ) of 1.86 µg mL-1. The low relative standard deviation values, 0.16-1.16, indicate good precision. The results were compared to other published data and were treated statistically using F and t-tests.
RESUMO
Crystalline free silica is considered as a lung carcinogen and the occupational exposure to its dust is a health hazard to workers employed in industries that involve ores of mineral dust. In Egypt, thousands of people work under conditions of silica dust exposure exceeding the occupational exposure limit, as a result the monitoring of this occupational exposure to crystalline silica dust is required by government legislation. The assessment of the later is a multi-phase process, depend on workplace measurements, quantitative analyses of samples, and comparison of results with the permissible limits. This study aims to investigate occupational exposure to crystalline silica dust at 22 factories in Egypt with different industrial activities like stone cutting, glass making, ceramic, and sand blasting. Dust samples were collected from work sites at the breathing zone using a personal sampling pump and a size-selective cyclone and analyzed using FTIR. The sampling period was 60-120â min. The results show that the exposure at each of the industrial sectors is very much higher than the current national and international limits, and that lead to a great risk of lung cancer and mortality to workers.
Assuntos
Poeira/análise , Exposição Ocupacional/análise , Dióxido de Silício/análise , Poluentes Ocupacionais do Ar/análise , Egito , Monitoramento Ambiental , Humanos , Exposição por Inalação/análise , Instalações Industriais e de ManufaturaRESUMO
Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied.