Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Saudi J Biol Sci ; 31(7): 104027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831894

RESUMO

MicroRNAs (miRNAs) are key regulators in Acute Myeloid Leukemia AML, affecting gene expression, including that of CD markers and impacting mutations within leukemic cells. Mutations in AML can alter miRNA profiles, which can affect the expression of CD markers and contribute to disease progression by influencing cellular processes such as differentiation, proliferation, and apoptosis. Here, we examined the interplay of cell surface protein expression (CD markers), DNA mutations, and microRNA expression in AML patients. We included 32 recently diagnosed AML patients, and CD marker expression was evaluated using flow cytometry and molecular techniques. This study aims to delve into this relationship within the context of AML, elucidating its potential implications for diagnosis, prognosis, and therapeutic interventions. Mutations were scrutinized in six patients using Whole-Exome Sequencing (WES), while quantitative PCR (qPCR) was employed to investigate the expression levels of nine microRNAs. Subsequently, a comprehensive interaction network was constructed using Cytoscape software, focusing on genes with significant mutations and their corresponding microRNAs. Cell surface protein expression analysis revealed upregulation of CD45, CD99, CD34, HLA-DR, CD38, CD13, CD33, MPO, CD15 and CD117 in AML patients. The molecular analysis results unveiled mutations in specific genes (FLT3, KIT, PTPN11, BCR, DNMT3A, and NRAS) targeted by nine microRNAs. Notably, eight microRNAs exhibited heightened expression levels. Network analysis highlighted interactions between the PTPN11 gene and six scrutinized microRNAs. Understanding the regulatory dynamics between gene mutations and microRNAs in AML patients is pivotal for unraveling the disease's molecular mechanisms and identifying potential therapeutic targets. Further exploration into the functional roles of microRNAs in gene regulation and AML pathogenesis is warranted to validate their potential as therapeutic targets, diagnostic markers, and advanced treatment strategies.

2.
Nat Biomed Eng ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769158

RESUMO

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

3.
Int Immunopharmacol ; 129: 111584, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364741

RESUMO

The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.


Assuntos
Células Supressoras Mieloides , Animais , Camundongos , Dinoprostona/metabolismo , Osteopontina/metabolismo , Pioglitazona , Evasão Tumoral
4.
Sci Signal ; 16(780): eabq0752, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37040441

RESUMO

Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.


Assuntos
Antígenos Ly , Células Matadoras Naturais , Camundongos , Animais , Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos Ly/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Sinapses/metabolismo
5.
Curr Issues Mol Biol ; 44(9): 3859-3871, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135177

RESUMO

Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.

6.
J Extracell Vesicles ; 11(6): e12238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716060

RESUMO

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Congelamento , Humanos , Ácidos Nucleicos/metabolismo , Trealose/metabolismo
7.
Asian Pac J Cancer Prev ; 23(2): 601-615, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225473

RESUMO

INTRODUCTION: There are limited published data regarding the recent incidence trends of cancer in Iraqi Kurdistan. METHODS: The present study assessed the epidemiological estimates of cancer incidence, as well providing a projection of future cancer trends in the upcoming decade by analysing the population-based cancer registry between 2013 and 2019, in both the Erbil and Duhok governorates. A retrospective analysis was performed on data retrieved from the Medical Statistics Department at the Ministry of Health, Kurdistan Regional Government (KRG). RESULTS: The total number of female cancer patients was higher in both governorates, and the total incidence of patients with cancer increased by over 2x between 2013 and 2019 in Erbil and Duhok, from 73 to 174 patients/100,000 individuals for women, and 36 to 85 patients/100,000 individuals for men. Analysis indicated that the percentage of patients with cancer is projected to increase by >2x in the current decade, from 3,457 cases to 4,547 and 4,449 cases in the Erbil governorate; and from 1,365 to 2,633 and 2,737 cases in 2028 based on LSTM and bi-LTSM analysis in the Duhok governorate. Lung cancer (LC) and female breast cancer (BC) were the most prominent types of cancers diagnosed since 2013 in both the Erbil and Duhok governorates. CONCLUSION: The striking pattern of trends for both present and future cancer incidence rates require urgent solutions and comprehensive efforts to control risk factors that promote the increasing incidence of cancer in these two KRG governorates.
.


Assuntos
Neoplasias/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Iraque/epidemiologia , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Estudos Retrospectivos , Distribuição por Sexo , Adulto Jovem
8.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34616047

RESUMO

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Animais , Citocinas , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
9.
Leukemia ; 35(5): 1317-1329, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526860

RESUMO

Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the "gatekeeper" residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/genética , Benzamidas/farmacologia , Cisteína/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação/genética , Piperidinas/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/fisiologia , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Chlorocebus aethiops , Células HEK293 , Humanos , Inibidores de Proteínas Quinases/farmacologia , Treonina/genética
10.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33593878

RESUMO

IL-15 priming of NK cells is a broadly accepted concept, but the dynamics and underlying molecular mechanisms remain poorly understood. We show that as little as 5 min of IL-15 treatment in vitro, followed by removal of excess cytokines, results in a long-lasting, but reversible, augmentation of NK cell responsiveness upon activating receptor cross-linking. In contrast to long-term stimulation, improved NK cell function after short-term IL-15 priming was not associated with enhanced metabolism but was based on the increased steady-state phosphorylation level of signalling molecules downstream of activating receptors. Inhibition of JAK3 eliminated this priming effect, suggesting a cross talk between the IL-15 receptor and ITAM-dependent activating receptors. Increased signalling molecule phosphorylation levels, calcium flux, and IFN-γ secretion lasted for up to 3 h after IL-15 stimulation before returning to baseline. We conclude that IL-15 rapidly and reversibly primes NK cell function by modulating activating receptor signalling. Our findings suggest a mechanism by which NK cell reactivity can potentially be maintained in vivo based on only brief encounters with IL-15 trans-presenting cells.


Assuntos
Metabolismo Energético , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Citocinas/metabolismo , Imunofenotipagem , Interferon gama/metabolismo , Interleucina-15/farmacologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Camundongos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Asian Pac J Cancer Prev ; 22(1): 131-137, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507690

RESUMO

INTRODUCTION: The present study aimed to determine the alterations in the serum levels of tumor markers used to evaluate cardiac, renal and liver function, and detect the interleukin (IL)-18 rs1946518 polymorphism in breast (BC), colorectal (CRC) and prostate cancer (PCa) patients. METHODS: Blood samples were collected from 65 female BC, 116 CRC, 79 PCa and 88 myocardial infarction (MI) patients, and 110 healthy individuals to determine the concentration of tumor and cardiac markers. Furthermore, the IL-18 rs1946518 polymorphism was assessed using amplification refractory mutation system (ARMS)-PCR. RESULTS: The serum levels of the tumor markers cancer antigen 15-3 (CA 15-3), carbohydrate antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA) and total prostate-specific antigen (TPSA) were significantly increased in cancer patients compared with healthy controls. Furthermore, the activity of high-sensitivity cardiac troponin T (hs-cTnT) and creatine kinase­myocardial band (CK-MB) was enhanced in MI patients, however, their activity was unchanged in cancer patients. The activity of alkaline phosphatase (ALP), and the serum concentration of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and urea were markedly elevated in CRC and PCa patients, respectively, compared with the control group. Although, no significant differences were observed in the -607 C/A polymorphism and allele frequency of IL-18 among BC, CRC patients and healthy individuals, the odds ratio (OR) was 1.75 for both C and A allele in BC patients. Therefore, the -607 C/A polymorphism could be considered as a risk factor for BC. CONCLUSION: The aforementioned results suggested that tumor markers could be considered as excellent biomarkers for the early detection of BC, CRC and PCa, whereas the concentration of liver enzymes could serve as an alternative indicator for the diagnosis of CRC and PCa. Additionally, the rs1946518 polymorphism in the IL-18 gene could be considered as a risk factor for the occurrence of BC, CRC and PCa.
.


Assuntos
Neoplasias da Mama/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Cardiopatias/patologia , Interleucina-18/genética , Nefropatias/patologia , Hepatopatias/patologia , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/fisiopatologia , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Cardiopatias/etiologia , Cardiopatias/metabolismo , Humanos , Nefropatias/etiologia , Nefropatias/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Prognóstico
12.
Int Immunopharmacol ; 78: 106042, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812067

RESUMO

Acute graft-versus-host disease (aGVHD) and kidney injury are the major complications after allogeneic hematopoietic stem cell transplantation (HSCT). Although the underlying mechanisms for the development of these complications are not yet fully understood, it has been proposed that emergence of aGVHD contributes to the development of kidney injury after HSCT. We have shown previously that aGVHD targets the kidney in a biphasic manner: at the onset, inflammatory genes are up-regulated, while when aGVHD becomes established, donor lymphocytes infiltrate the kidney. Here, we characterize renal manifestations at the onset of aGVHD. Mice receiving allogeneic bone marrow and spleen cells displayed symptoms of aGVHD and elevated serum levels of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) within 4 days. There was concurrent kidney injury with the following characteristics: (1) elevated expression of the kidney injury biomarker, neutrophil gelatinase-associated lipocalin (NGAL), (2) accumulation of hetero-lysosomes in proximal tubule epithelial cells, and (3) reductions in αKlotho mRNA and protein and increased serum levels of fibroblast growth factor 23 (Fgf23), phosphate and urea. This situation resembled acute renal injury caused by bacterial lipopolysaccharide. We conclude that the onset of aGVHD is associated with kidney injury involving down-regulation of αKlotho, a sight that may inspire novel therapeutic approaches.


Assuntos
Injúria Renal Aguda/imunologia , Transplante de Medula Óssea/efeitos adversos , Glucuronidase/metabolismo , Doença Enxerto-Hospedeiro/complicações , Injúria Renal Aguda/sangue , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/patologia , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/imunologia , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/imunologia , Humanos , Interferon gama/sangue , Interferon gama/imunologia , Rim , Proteínas Klotho , Lipocalina-2/análise , Lipocalina-2/metabolismo , Masculino , Camundongos , Transplante Homólogo/efeitos adversos , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
13.
Biochem Biophys Res Commun ; 504(4): 749-752, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217447

RESUMO

Many cancer types carry mutations in protein tyrosine kinase (PTK) and such alterations frequently drive tumor progression. One category is gene translocation of PTKs yielding chimeric proteins with transforming capacity. In this study, we characterized the role of ITK-FER [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with Feline Encephalitis Virus-Related kinase (FER) gene] and ITK-SYK [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with the Spleen Tyrosine Kinase (SYK)] in Peripheral T Cell Lymphoma (PTCL) signaling. We observed an induction of tyrosine phosphorylation events in the presence of both ITK-FER and ITK-SYK. The downstream targets of ITK-FER and ITK-SYK were explored and STAT3 was found to be highly phosphorylated by these fusion kinases. In addition, the CD69 T-cell activation marker was significantly elevated. Apart from tyrosine kinase inhibitors acting directly on the fusions, we believe that drugs acting on downstream targets could serve as alternative cancer therapies for fusion PTKs.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Células Jurkat , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Fosforilação , Proteínas Tirosina Quinases/genética , Quinase Syk/genética , Quinase Syk/metabolismo , Translocação Genética
14.
Front Immunol ; 9: 1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951064

RESUMO

Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.

15.
PLoS One ; 12(4): e0174909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28369144

RESUMO

Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src/fisiologia , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/citologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Mutação/genética , Proteínas Nucleares/genética , Biblioteca de Peptídeos , Ligação Proteica/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Domínios de Homologia de src/genética
16.
Oncotarget ; 8(66): 109857-109858, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299112
17.
PLoS One ; 11(8): e0160255, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27487157

RESUMO

Protein kinase B (AKT) phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR) activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206) dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins.


Assuntos
Ativação Linfocitária/fisiologia , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Processamento Pós-Transcricional do RNA , Receptores de Antígenos de Linfócitos B/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
18.
Int J Biochem Cell Biol ; 78: 63-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381982

RESUMO

The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7.


Assuntos
Proteínas 14-3-3/metabolismo , Carioferinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Quinase Syk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoplasma/metabolismo , Humanos , Fosforilação , Quinase Syk/química
19.
Br J Haematol ; 174(1): 117-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991755

RESUMO

The small molecule APR-246 (PRIMA-1(MET) ) is a novel drug that restores the activity of mutated and unfolded TP53 protein. However, the mechanisms of action and potential off-target effects are not fully understood. Gene expression profiling in TP53 mutant KMB3 acute myeloid leukaemia (AML) cells showed that genes which protected cells from oxidative stress to be the most up-regulated. APR-246 exposure also induced reactive oxygen species (ROS) formation and depleted glutathione in AML cells. The genes most up-regulated by APR-246, confirmed by quantitative real time polymerase chain reaction, were heme oxygenase-1 (HMOX1, also termed HO-1), SLC7A11 and RIT1. Up-regulation of HMOX1, a key regulator of cellular response to ROS, was independent of TP53 mutational status. NFE2L2 (also termed Nrf2), a master regulator of HMOX1 expression, showed transcriptional up-regulation and nuclear translocation by APR-246. Down-regulation of NFE2L2 by siRNA in AML cells significantly increased the antitumoural effects of APR-246. The PI3K inhibitor wortmannin and the mTOR inhibitor rapamycin inhibited APR-246-induced nuclear translocation of NFE2L2 and counteracted the protective cellular responses to APR-246, resulting in synergistic cell killing together with APR-246. In conclusion, ROS induction is important for antileukaemic activities of APR-246 and inhibiting the protective response of the Nrf-2/HMOX1 axis using PI3K inhibitors, enhances the antileukaemic effects.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Quinuclidinas/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
20.
J Clin Invest ; 124(9): 4067-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105368

RESUMO

X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.


Assuntos
Agamaglobulinemia/terapia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Oligonucleotídeos/genética , Proteínas Tirosina Quinases/fisiologia , Splicing de RNA , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/enzimologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Humanos , Luciferases/genética , Camundongos Transgênicos , Monócitos/enzimologia , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA