Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Biomolecules ; 13(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37189396

RESUMO

Pancreatic ß cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in ß cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in ß cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects ß cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect ß cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to ß cell failure.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Autofagia/fisiologia
3.
Biomed Pharmacother ; 154: 113534, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994816

RESUMO

Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.


Assuntos
Encefalopatias , COVID-19 , Doenças do Sistema Nervoso , Barreira Hematoencefálica , COVID-19/complicações , Células Endoteliais , Humanos , SARS-CoV-2
4.
Rev Assoc Med Bras (1992) ; 68(4): 456-462, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35649067

RESUMO

OBJECTIVE: The phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway is essential for proper cellular metabolism and cell growth. However, aberrant activation of this pathway has been linked to the progression and metastasis of breast cancer. Recently, the role of long non-coding RNAs in interfering with the cell signaling pathways involved in cell growth and metabolism has been identified. HOX antisense intergenic RNA is an long non-coding RNA whose abnormal expression has been associated with development, therapy resistance, and metastasis of breast cancer. The purpose of this study was to investigate whether the long non-coding RNA HOX antisense intergenic RNA is linked to the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells. METHODS: HOX antisense intergenic RNA was silenced in the breast cancer cell line MCF-7 using siRNAs. Subsequently, the gene expression level of HOX antisense intergenic RNA, PI3K, AKT, and mTOR was assessed using real-time RT-PCR. Also, the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide) assay was used to analyze cell proliferation. RESULTS: The results revealed that HOX antisense intergenic RNA knockdown can downregulate the expression of PI3K, AKT, and mTOR RNAs compared to negative control in MCF-7 cells. In addition, the proliferation of breast cancer cells was significantly reduced following the HOX antisense intergenic RNA silencing. CONCLUSION: This study may introduce HOX antisense intergenic RNA as a molecule involved in the upregulation of the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells that may contribute to breast cancer cell proliferation.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/patologia , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
5.
Toxicol Rep ; 9: 647-655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399215

RESUMO

In this work, we did our best to develop a novel and interesting analytical method based on coupling of spectrofluorimetry with first-order multivariate calibration techniques for simultaneous determination of lead (Pd), zinc (Zn) and cadmium (Cd) in HeLa cells. To achieve this goal, quenching of the emission of graphene (GR) was individually investigated in the presence of Pb, Zn and Cd and then, according to the linear ranges obtained from individual calibration graphs, a multivariate calibration model was developed based on modeling of the quenching of the emission of GR in the presence of the mixtures of Pb, Zn and Cd. First-order multivariate calibration models were constructed by partial least squares (PLS), principal component regression (PCR), orthogonal signal correction-PLS (OSC-PLS), continuum power regression (CPR), robust continuum regression (RCR) and partial robust M-regression (PRM) and their performances were evaluated and statistically compared. Finally, the OSC-PLS was chosen as the best model with the best practical performance for analytical purposes.

6.
Rev. Assoc. Med. Bras. (1992) ; 68(4): 456-462, Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1376153

RESUMO

SUMMARY OBJECTIVE: The phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway is essential for proper cellular metabolism and cell growth. However, aberrant activation of this pathway has been linked to the progression and metastasis of breast cancer. Recently, the role of long non-coding RNAs in interfering with the cell signaling pathways involved in cell growth and metabolism has been identified. HOX antisense intergenic RNA is an long non-coding RNA whose abnormal expression has been associated with development, therapy resistance, and metastasis of breast cancer. The purpose of this study was to investigate whether the long non-coding RNA HOX antisense intergenic RNA is linked to the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells. METHODS: HOX antisense intergenic RNA was silenced in the breast cancer cell line MCF-7 using siRNAs. Subsequently, the gene expression level of HOX antisense intergenic RNA, PI3K, AKT, and mTOR was assessed using real-time RT-PCR. Also, the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide) assay was used to analyze cell proliferation. RESULTS: The results revealed that HOX antisense intergenic RNA knockdown can downregulate the expression of PI3K, AKT, and mTOR RNAs compared to negative control in MCF-7 cells. In addition, the proliferation of breast cancer cells was significantly reduced following the HOX antisense intergenic RNA silencing. CONCLUSION: This study may introduce HOX antisense intergenic RNA as a molecule involved in the upregulation of the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells that may contribute to breast cancer cell proliferation.

7.
Int Immunopharmacol ; 106: 108581, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149296

RESUMO

The compound "2-methylpyridine-1-ium-1-sulfonate" (MPS) is the active constituent of Allium hirtifolium Boiss. bulbs with potent anti-angiogenic and anti-cancer activities. Tumor microenvironment (TME) plays a key role in tumor progression via tumor derived exosome (TEX) mediated polarization of M2 type tumor associated macrophages (TAMs). In this study, we explored direct and colorectal cancer (CRC) exosome-mediated impacts of MPS on macrophage polarization to find out whether MPS could modify TEX in favor of anti-tumor M1-like macrophage polarization. After MPS isolation and characterization, first its direct anti-cancer effects were evaluated on HT-29 cells. Then, TEX were isolated from untreated (C-TEX) and MPS-treated (MPS-TEX) HT-29 cells. THP-1 M0 macrophages were incubated with MPS, C-TEX and MPS-TEX. Macrophage polarization was evaluated by flow cytometry, ELISA and gene expression analysis of several M1- and M2-related markers. MPS induced apoptosis and cell cycle arrest and reduced the migration ability of HT-29 cells. C-TEX polarized M0 macrophages toward a mixed M1-/M2-like phenotype with a high predominance of M2-like cells. Macrophage treatment with MPS was associated with the induction of M1-like phenotype. Also, MPS was demonstrated to ameliorate TEX-mediated effects in favor of M1-like polarization. In conclusion, our study addresses for the first time, the potential capability of MPS in skewing macrophages toward an anti-cancer M1-like phenotype both directly and in a TEX-dependent manner. Thus, in addition to its direct anti-cancer effects, this compound could also modify TME in favor of tumor eradication via its direct and TEX-mediated effects on macrophage polarization as a novel anti-cancer mechanism.


Assuntos
Allium , Microambiente Tumoral , Ativação de Macrófagos , Macrófagos/metabolismo , Piridinas , Compostos de Piridínio
8.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 195-200, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933709

RESUMO

Diabetes can cause some diseases or abnormalities. One of the disorders caused by diabetes may be erectile dysfunction (ED). ED is sexual dysfunction characterized by the inability to establish or maintain an erect penis during sexual activity and is a common problem of men with chronic type 2 diabetes. These processes, disorders and diseases are highly influenced by the genetics of individuals. In this study, the relationship between genes and diabetes and ED has been explored by a system biology approach. For this purpose, the samples from ten control and diabetic-ED rats were collected. After a search in Gene Expression Omnibus (GEO), series with accession number GSE2457 comprising of 5 normal and 5 diabetic-ED rats were selected. Raw CEL files of these samples were normalized with robust multi-array average (RMA) expression measure method by using the linear models for microarray data (LIMMA) R package. The extracted probe IDs were transformed into 10451 unique and validated official gene symbols. Then, differentially expressed genes (DEGs) were identified between control and normal penile mucosa by employing the LIMMA R package. DEGs were classified by utilizing KEGG to underlying pathways by Enrichr. The expression values of DEGs were used to construct a gene regulatory network (GRN), by the GENEI3 R package. To analyze the topology of constructed GRNs, betweenness centrality was calculated. Genes with higher betweenness centrality scores were then identified, through the CytoNCA. We then took the commonality of DEGs genes and high-top ranking genes from CytoNCA via a predicted interaction network using GeneMANIA as the most likely important genes in erectile dysfunction. Among the 374 DEGs studied, 146 DEGs showed up-regulation and 228 DEGs displayed down-regulation expression in diabetic-ED rats. According to the Volcano plot, the dpp4, LOC102553868, Ndufa412, Oxct1, Atp2b3 and Zfp91 gene down-regulated and Lpl, Retsat, B4galt1 and Pdk4 genes up-regulated in ED and diabetic rats. Furthermore, genes like dpp4 acted as hubs in the inferred GRN.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Disfunção Erétil/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Animais , Bases de Dados Genéticas/estatística & dados numéricos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Disfunção Erétil/complicações , Redes Reguladoras de Genes , Humanos , Masculino , Modelos Genéticos , Mapas de Interação de Proteínas/genética , Ratos , Transdução de Sinais/genética
9.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 89-94, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817334

RESUMO

Erectile dysfunction (ED) is one of the most common sexual disorders in men. During the past 30 years, there has been no new drug development for ED. Thus, exploring the genetic basis of ED deserves further study, in hope of developing new pharmacological treatments for ED. In this study, Real-Time PCR analysis was used to assess the expression of androgen regulatory protein (Andpro) and pyruvate dehydrogenase kinase 4 (Pdk4) genes in ED. For this purpose, the experiment was performed on 20 men with severe ED and 20 potent men. IIEF-15 was used to determine the ED severity. The study was conducted in the Department of Sexual Medicine of the Kermanshah University of Medical Sciences, Kermanshah, Iran. The EDTA-Na vacuum blood tube was taken from ED patients and controls. Informed consent was obtained from all participants. After blood sampling, RNA was extracted from whole blood. Then cDNA was synthesized. The gene expression was analyzed through the qPCR method. The ß-actin was used as a reference gene. To further study these two proteins, their three-dimensional structures were predicted through I-TASSER. Compared with controls, in ED patients, the expression of the Andpro gene decreased, while the expression of the Pdk4 gene increased (p<0.01). Predicting the structure of the protein showed that Pyruvate Dehydrogenase Kinase 4 had a double subunit and androgen-regulated protein had a single subunit.


Assuntos
Disfunção Erétil , Regulação da Expressão Gênica , Proteínas Quinases , Proteínas e Peptídeos Salivares , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Algoritmos , Sequência de Aminoácidos , Biologia Computacional/métodos , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Disfunção Erétil/patologia , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Índice de Gravidade de Doença
10.
Iran J Immunol ; 18(1): 13-33, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33787511

RESUMO

The COVID-19 pandemic is probably the most devastating worldwide challenge in recent century. COVID-19 leads to a mild to severe respiratory disease and affects different organs and has become a global concern since December 2019. Meanwhile, molecular biology and diagnostic laboratories played an essential role in diagnosis of the disease by introducing serological and molecular tests. Molecular-based techniques are reliable detection tools for SARS-CoV-2 and used for diagnosis of patients especially in the early stage of the disease. While, serological assays are considered as additional tools to verify the asymptomatic infections, tracing previous contacts of individuals, vaccine efficacy, and study the seroprevalance. The average time of the appearance of anti-SARS-CoV-2 antibodies in the patient's serum is 3-6 days after the onset of symptoms for both IgM and IgA and 10-18 days for IgG. Following the outbreak of COVID-19, FDA has approved and authorized a series of serological laboratory tests for early diagnosis. Serological assays have low-cost and provide fast results but have poor sensitivity in the early stage of the viral infection. Although the serological tests may not play an important role in the active case of COVID-19, it could be effective to determine the immunity of health care workers, and confirm late COVID-19 cases during the outbreak. In this review, we compared various laboratory diagnostic assays for COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , COVID-19/diagnóstico , RNA Viral/sangue , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/genética , COVID-19/imunologia , Diagnóstico Precoce , Interações Hospedeiro-Patógeno , Humanos , Valor Preditivo dos Testes , RNA Viral/genética , Reprodutibilidade dos Testes
11.
Breast Cancer Res Treat ; 185(2): 261-279, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33011829

RESUMO

PURPOSE: Ductal breast carcinoma as a heterogeneous disease has different molecular subtypes associated with clinical prognosis and patients' survival. The role of immune system as a consistent part of the tumor microenvironment (TME) has been documented in progression of ductal breast carcinoma. Here, we aimed to describe the important immune cells and the immune system-associated molecules in Ductal Carcinoma In situ (DCIS) and Invasive Ductal Carcinoma (IDC) with special emphasis on their associations with different molecular subtypes and patients' prognosis. RESULTS: The immune cells have a dual role in breast cancer (BC) microenvironment depending on the molecular subtype or tumor grade. These cells with different frequencies are present in the TME of DCIS and IDC. The presence of regulatory cells including Tregs, MDSC, Th2, Th17, M2 macrophages, HLADR- T cells, and Tγδ cells is related to more immunosuppressive microenvironment, especially in ER- and TN subtypes. In contrast, NK cells, CTL, Th, and Tfh cells are associated to the anti-tumor activity. These cells are higher in ER+ BC, although in other subtypes such as TN or HER2+ are associated with a favorable prognosis. CONCLUSION: Determining the specific immune response in each subtype could be helpful in estimating the possible behavior of the tumor cells in TME. It is important to realize that different frequencies of immune cells in BC environment likely determine the patients' prognosis and their survival in each subtype. Therefore, elucidation of the distinct immune players in TME would be helpful toward developing targeted therapies in each subtype.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Imunidade Celular , Microambiente Tumoral , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Feminino , Humanos , Prognóstico
12.
Life Sci ; 258: 118185, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750438

RESUMO

AIMS: The immune response is essential for the control and resolution of viral infections. Following the outbreak of novel coronavirus disease (COVID-19), several immunotherapies were applied to modulate the immune responses of the affected patients. In this review, we aimed to describe the role of the immune system in response to COVID-19. We also provide a systematic review to collate and describe all published reports of the using immunotherapies, including convalescent plasma therapy, monoclonal antibodies, cytokine therapy, mesenchymal stem cell therapy, and intravenous immunoglobulin and their important outcomes in COVID-19 patients. MATERIAL AND METHODS: A thorough search strategy was applied to identify published research trials in PubMed, Scopus, Medline, and EMBASE from Dec 1, 2019, to May 4, 2020, for studies reporting clinical outcomes of COVID-19 patients treated with immunotherapies along with other standard cares. KEY FINDINGS: From an initial screen of 80 identified studies, 24 studies provided clinical outcome data on the use of immunotherapies for the treatment of COVID-19 patients, including convalescent plasma therapy (33 patients), monoclonal antibodies (55 patients), interferon (31 patients), mesenchymal stem cell therapy (8 patient), and immunoglobulin (63 patients). Except for nine severe patients who died after treatment, most patients were recovered from COVID-19 with improved clinical symptoms and laboratory assessment. SIGNIFICANCE: Based on the available evidence, it seems that treatment with immunotherapy along with other standard cares could be an effective and safe approach to modulate the immune system and improvement of clinical outcomes.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/terapia , Imunoterapia/métodos , Pneumonia Viral/terapia , Anticorpos Monoclonais/uso terapêutico , COVID-19 , Infecções por Coronavirus/imunologia , Humanos , Imunização Passiva/métodos , Imunoglobulinas Intravenosas/uso terapêutico , Interferons/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Pandemias , Pneumonia Viral/imunologia , SARS-CoV-2 , Resultado do Tratamento , Soroterapia para COVID-19
13.
Int J Mol Cell Med ; 9(1): 73-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832486

RESUMO

Atherosclerosis is an inflammatory disease in which intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin (SELE) are consistently expressed in the vascular endothelium. Several evidence support the crucial role of adhesion molecules in the development of atherosclerosis and plaque instability. Due to the anti-inflammatory activity of Tribulus terrestris (TT), the present study investigated the effect of aqueous extract and saponin fraction of TT on the expression of ICAM-1, VCAM-1, and SELE genes in endothelial cells during normal and lipopolysaccharide (LPS) induced conditions. Human umbilical vein endothelial cells (HUVEC) and human bone marrow endothelial cells (HBMEC) were cultured, stimulated by LPS, and treated with aqueous extract and saponin fraction of TT. Finally, the expression of ICAM-1, VCAM-1, and SELE genes were measured using quantitative real-time polymerase chain reaction. LPS-induced HUVECs and HBMECs significantly increased the expression of ICAM-1, VCAM-1, and SELE in comparison with control groups (P<0.001). Treatment of LPS-induced HUVECs and HBMECs by aqueous extract and saponin fraction of TT decreased the expression of all three mentioned genes significantly (P<0.001) in comparison with LPS-induced cells. Taken together, our data suggest that TT has an anti-inflammatory effect. In vivo study about anti-inflammatory effect of this herb may provide new insights into the development of a herbal drug for the prevention/therapy of atherosclerosis.

14.
Rep Biochem Mol Biol ; 9(3): 250-256, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33649717

RESUMO

BACKGROUND: Non-Hodgkin's lymphomas comprise the most common hematological cancers worldwide and consist of a heterogenous group of malignancies affecting the lymphoid system. Treatment of non-Hodgkin's lymphoma has been significantly enhanced with the addition of Rituximab to the standard chemotherapy regimen. However, even with the advancement of treatment patients continue to relapse and develop resistance to Rituximab, rendering subsequent treatments unsuccessful. The use of novel drugs with unique antitumor mechanisms has gained considerable attention. In this study, we explored the in vitro anti-cancer effects of the combined therapy of Rituximab and Nisin on human Burkitt's lymphoma cells. METHODS: The human Burkitt's lymphoma cells lines, Raji and Daudi, were treated with Nisin, Rituximab, or a combination of the two agents at various concentrations. Cytotoxicity following treatment was determined using cell viability assay. The degree of apoptosis was verified via flow cytometric analysis using FITC annexin V/PI staining. RESULTS: Our findings show that the combined treatment of Rituximab and Nisin results in a more significant reduction in the survival of Raji and Daudi Burkitt's lymphoma cells, compared to Nisin or Rituximab treatment alone. Additionally, our results indicate that Nisin can induce a significant degree of apoptosis in the Burkitt's lymphoma cells compared to the negative controls. However, the addition of Nisin to the Rituximab treatment synergistically enhances the apoptotic antitumor effect. CONCLUSION: This study demonstrates the synergistic antitumor effect of Nisin treatment in vitro to enhance tumor cell apoptosis and the potential value of Nisin as an adjunct therapy in the treatment of lymphoma.

15.
J Biochem Mol Toxicol ; 33(12): e22406, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31593353

RESUMO

Soybean Bowman-Birk protease inhibitor (BBI) and genistein, two biological compounds from soybean, are well-known for their anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was designing a BBI-genistein conjugate and then investigating its protective effect on lipopolysaccharide (LPS)-induced inflammation in BALB/c mice, compared with the effects of combination of BBI and genistein. BBI was purified from soybean and the BBI-genistein conjugate was synthesized. The BALB/c mice were intraperitoneally treated 2 hours before LPS induction. Our results showed that treatment with the combination of BBI and genistein greatly led to more reduced serum levels of tumor necrosis factor (TNF)-α and interferon (IFN)-γ compared with the treatments of BBI alone, the BBI-genistein conjugate, and genistein alone, respectively. Moreover, the expression of TNF-α and IFN-γ in the splenocytes was significantly downregulated along with improving host survival against the LPS-induced lethal endotoxemia in the same way. Our data support a new combined therapy using BBI and genistein, as natural anti-inflammatory agents, to develop a new drug for inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Endotoxemia/tratamento farmacológico , Genisteína/uso terapêutico , Glycine max/química , Extratos Vegetais/uso terapêutico , Inibidor da Tripsina de Soja de Bowman-Birk/uso terapêutico , Animais , Combinação de Medicamentos , Endotoxemia/induzido quimicamente , Genisteína/administração & dosagem , Inflamação/metabolismo , Injeções Intraperitoneais , Interferon gama/antagonistas & inibidores , Interferon gama/sangue , Estimativa de Kaplan-Meier , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/antagonistas & inibidores , Baço/patologia , Taxa de Sobrevida , Resultado do Tratamento , Inibidor da Tripsina de Soja de Bowman-Birk/administração & dosagem , Inibidor da Tripsina de Soja de Bowman-Birk/isolamento & purificação , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue
16.
Nutr Cancer ; 71(4): 643-656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30273005

RESUMO

"Let food be thy medicine and thy medicine be thy food" was expressed by Hippocrates and the health benefits of medicinal plants and natural products have been considered by humans since historic times. The current study aims to investigate the anti-cancer activity of 2-Methylpyridine-1-ium-1-sulfonate (MPS) isolated from bulbs of Allium hirtifolium. The MPS compound (in a dose-dependent manner) induced arrest the AGS cells in G1 and G2/M phases, and Caco-2 cells in G1 and S phases. These findings were associated with the down-regulation of cyclin D1, CDK4, and up-regulation of p21, p27 and p53. According to the morphological observations and DNA fragmentation assay, the MPS compound induced apoptosis in both cell lines, and also cause a significant increase in the expression of Bax/Bcl-2. In this context, our molecular docking results unveiled that the MPS compound has considerable affinity to interact with the minor groove of ctDNA and also with cell cycle kinases. To approve and find the accurate MPS mode of action against cancer cell lines (especially in gastrointestinal cancer) further studies is highly recommended.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Piridinas/farmacologia , Compostos de Piridínio/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Allium/química , Antineoplásicos Fitogênicos/química , Células CACO-2 , Caspase 3/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Piridinas/química , Compostos de Piridínio/química
17.
Mol Biol Rep ; 46(1): 7-16, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30506508

RESUMO

Stevia rebaudiana produces sweet steviol glycosides that are 300 times sweeter than sugar and have the beneficial effects on human health including anti-hyperglycaemic. Tissue culture is the best method with high efficacy to propagate stevia. Abiotic stress has an impact on steviol glycoside contents in stevia. Therefore, we investigated the effect of mannitol on the expression of four genes involved in the biosynthesis of stevia including UGT74G1, UGT76G1, kaurene oxidase and kaurene synthase genes and steviol glycosides accumulation in stevia under in vitro conditions. The highest expression of UGT76G1 gene occurred in the plants grown under 20 g/l mannitol. While for the kaurene synthase gene, the highest amount of gene expression was observed at 40 g/l mannitol. The results were different about kaurene oxidase gene. As the highest and lowest gene expression were seen in 50 and 30 g/l mannitol conditions respectively. There were the same results for UGT74G1 that means the most appropriate and also the most inopportune treatment for the gene expression were same as the condition for the kaurene oxidase gene. Compared with control, adding mannitol to media in all concentrations increases the expression of UGT76G1 gene. Estimation of steviol glycosides contents under different treatments of mannitol carried out by HPLC. According to the results, the highest amount of stevioside was produced under 20 g/l mannitol treatment. However, rebaudioside A was accumulated in its maximum amounts under 30 g/l mannitol. It can be concluded that adding mannitol to media in the certain concentration increases steviol glycoside contents in the stevia.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Stevia/genética , Stevia/metabolismo , Cromatografia Líquida de Alta Pressão , Diterpenos do Tipo Caurano/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Glucosídeos/biossíntese , Glicosídeos , Manitol/metabolismo , Folhas de Planta/genética , Técnicas de Cultura de Tecidos
18.
Clin Exp Pharmacol Physiol ; 45(4): 370-376, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266560

RESUMO

Angiogenesis is a process through which new capillaries are formed from pre-existing ones, which contributes significantly to the pathogenesis of numerous diseases, such as cancer and chronic inflammatory disorders. The ß-D-mannuronic acid (M2000) is a novel non-steroidal anti-inflammatory drug (NSAID) with immunosuppressive effects and is a matrix metalloproteinase (MMP) inhibitor. This research aimed to study the anti-angiogenesis effects of M2000 under in vitro and in vivo models. The cytotoxic and anti-proliferative effects of M2000 were examined using the trypan blue method and the MTT assay, respectively. The 3D collagen-cytodex model and the chick chorioallantoic membrane (CAM) assay were then used to evaluate the anti-angiogenesis property of M2000. Cytotoxicity assay revealed that M2000 (at concentrations of less than 100 µg/mL) had no cytotoxic effect on human umbilical vein endothelial cells (HUVECs). It was also illustrated that M2000 had little or no anti-proliferative effect on HUVECs. In addition, the anti-angiogenesis effects of M2000 were shown to be marginal in the in vitro model and both significant and dose-dependent in the in vivo status. This study showed that M2000 could be considered as an anti-angiogenic molecule which more likely exerts its activity mainly via indirect effects on endothelial cells and its anti-inflammatory effects may partly be attributable to its anti-angiogenic activity. Therefore, it could be recommended as a candidate for prevention and treatment of cancer, chronic inflammatory diseases, and other angiogenesis-related disorders.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Hexurônicos/farmacologia , Imunossupressores/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ratos
19.
Biomed Pharmacother ; 93: 117-129, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624423

RESUMO

Natural products have well been recognized as sources of drugs in cancer treatment. Some medicinal plants contain the constituents with potent anti-angiogenic and anti-cancer effects, which have offered great hopes of being used as drugs for treating various cancers. The present study aims at identifying the anti-angiogenic effects of 2-Methylpyridine-1-ium-1-sulfonate (MPS) isolated from the ethyl acetate extract (EA) of Persian shallot (Allium hirtifolium). In a concentration-dependent manner, the MPS was able to inhibit endothelial cell migration and angiogenesis in both in vivo and in vitro assays, and also significantly suppressed proliferation of MCF-7 and MDA-MB-231 human breast cancer cell lines. Additionally, treatment with MPS showed a significant reduction in the vascular endothelial growth factor (VEGF) secretion level and production/activity of matrix metalloproteinases (MMP-2 and MMP-9) in the studied cells. The flow cytometry analysis indicated that MPS suppressed growth of MCF-7 and MDA-MB-231 cells at G0/G1 and S phases, respectively. Our results indicated that the induction of cell cycle arrest was correlated with the obvious changes in expression of p21, p27 and p53. According to the DNA fragmentation assay, MPS caused apoptosis in both cell lines, which confirms the results obtained with the growth assay. Moreover, the compound-mediated apoptosis accompanied with the increase in the Bax/Bcl-2 ratio and caspase-3 and -9 activities. Molecular docking results indicated that the MPS compound can surprisingly bind to VEGF and VEGF receptors and interacts with their critical amino acids. Finally, compounds with anticancer inhibitory activity (e.g. MPS) are abundant in nature and can be obtained from several sources. So, our data can be clinically developed for treating angiogenesis and cancer significantly.


Assuntos
Allium/química , Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Picolinas/farmacologia , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Adv Pharmacol Sci ; 2014: 847574, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276123

RESUMO

Natural products are excellent resources for finding lead structures for the development of chemotherapeutic agents. Coumarins are a class of natural compounds found in a variety of plants. In this study, we evaluated the cytotoxic potential of coumarins isolated from Prangos ferulacea (L.) Lindl. in PC3, SKNMC, and H1299 (p53 null) human carcinoma cell lines. Osthole proved to be an outstanding potent cytotoxic agent especially against PC3 cells. Isoimperatorin exhibited moderate inhibitory effect against SKNMC and PC3 cell lines. Oxypeucedanin and braylin did not display any cytotoxic activity. In the next set of experiments, the apoptotic potentials of osthole and isoimperatorin were investigated. Induction of apoptosis by isoimperatorin was accompanied by an increase in activation of caspase-3, -8, and -9 in SKNMC cells and caspase-3 and -9 in PC3 cells. Moreover, isoimperatorin induced apoptosis by upregulating Bax and Smac/DIABLO genes in PC3 and SKNMC cells. Osthole induced apoptosis by downregulating antiapoptotic Bcl-2 in only PC3 cells and upregulating the proapoptotic genes Bax and Smac/DIABLO in PC3, SKNMC, and H1299 cells. The effects of osthole on H1299 cells are important because the loss of p53 has been associated with poor clinical prognosis in cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA