Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
ACS Nanosci Au ; 4(2): 136-145, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644967

RESUMO

The SARS-CoV-2 pandemic spurred numerous research endeavors to comprehend the virus and mitigate its global severity. Understanding the binding interface between the virus and human receptors is pivotal to these efforts and paramount to curbing infection and transmission. Here we employ atomic force microscopy and steered molecular dynamics simulation to explore SARS-CoV-2 receptor binding domain (RBD) variants and angiotensin-converting enzyme 2 (ACE2), examining the impact of mutations at key residues upon binding affinity. Our results show that the Omicron and Delta variants possess strengthened binding affinity in comparison to the Mu variant. Further, using sera from individuals either vaccinated or with acquired immunity following Delta strain infection, we assess the impact of immunity upon variant RBD/ACE2 complex formation. Single-molecule force spectroscopy analysis suggests that vaccination before infection may provide stronger protection across variants. These results underscore the need to monitor antigenic changes in order to continue developing innovative and effective SARS-CoV-2 abrogation strategies.

2.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830688

RESUMO

Myoblast migration is crucial for myogenesis and muscular tissue homeostasis. However, its spatiotemporal control remains elusive. Here, we explored the involvement of plasma membrane cholesterol and sphingolipids in this process. In resting C2C12 mouse myoblasts, those lipids clustered in sphingomyelin/cholesterol/GM1 ganglioside (SM/chol/GM1)- and cholesterol (chol)-enriched domains, which presented a lower stiffness than the bulk membrane. Upon migration, cholesterol and sphingomyelin polarized at the front, forming cholesterol (chol)- and sphingomyelin/cholesterol (SM/chol)-enriched domains, while GM1-enriched domains polarized at the rear. A comparison of domain proportion suggested that SM/chol- and GM1-enriched domains originated from the SM/chol/GM1-coenriched domains found at resting state. Modulation of domain proportion (through cholesterol depletion, combined or not with actin polymerization inhibition, or sphingolipid synthesis inhibition) revealed that the higher the chol- and SM/chol-enriched domains, the higher the myoblast migration. At the front, chol- and SM/chol-enriched domains were found in proximity with F-actin fibers and the lateral mobility of sphingomyelin in domains was specifically restricted in a cholesterol- and cytoskeleton-dependent manner while domain abrogation impaired F-actin and focal adhesion polarization. Altogether, we showed the polarization of cholesterol and sphingomyelin and their clustering in chol- and SM/chol-enriched domains with differential properties and roles, providing a mechanism for the spatial and functional control of myoblast migration.


Assuntos
Gangliosídeo G(M1) , Esfingomielinas , Animais , Camundongos , Esfingomielinas/metabolismo , Actinas , Colesterol/metabolismo , Análise por Conglomerados
3.
Cell Mol Life Sci ; 79(8): 417, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819726

RESUMO

Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.


Assuntos
Neoplasias da Mama , Podossomos , Neoplasias da Mama/patologia , Colesterol/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Podossomos/metabolismo
5.
Nat Commun ; 13(1): 2564, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538121

RESUMO

The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Sítios de Ligação , Humanos , Ácido N-Acetilneuramínico , Ligação Proteica , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Chem Commun (Camb) ; 58(33): 5072-5087, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35315846

RESUMO

Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.


Assuntos
COVID-19 , Nanoestruturas , Humanos , Cinética , Ligantes , Microscopia de Força Atômica/métodos
7.
Nano Lett ; 21(22): 9720-9728, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762801

RESUMO

Breast cancer is the most common cancer in women. Although current therapies have increased survival rates for some breast cancer types, other aggressive invasive breast cancers remain difficult to treat. As the onset of breast cancer is often associated with the appearance of extracellular markers, these could be used to better target therapeutic agents. Here, we demonstrated by nanobiophysical approaches that overexpression of α-sialylated glycans in breast cancer provides an opportunity to combat cancer cells with oncolytic reoviruses. Notably, a correlation between cellular glycan expression and the mechanical properties of reovirus attachment and infection is observed in a serotype-dependent manner. Furthermore, we enhance the infectivity of reoviruses in malignant cells by the coinjection of α-sialylated glycans. In conclusion, this study supports both the use of reoviruses as an oncolytic agent in nanomedicine and the role of α-sialylated glycans as adjuvants in oncolysis, offering new perspective in oncolytic cancer therapy.


Assuntos
Neoplasias da Mama , Reoviridae , Neoplasias da Mama/terapia , Feminino , Humanos , Polissacarídeos
8.
Sci Rep ; 11(1): 16279, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381087

RESUMO

The migration of tumorigenic cells is a critical step for metastatic breast cancer progression. Although the role of the extracellular matrix in breast cancer cell migration has been extensively described, the effect of osmotic stress on the migration of tumor breast cohorts remains unclear. Most of our understanding on the effect of osmotic stresses on cell migration comes from studies at the level of the single cell in isolation and does not take cell-cell interactions into account. Here, we study the impact of moderate osmotic stress on the migration of cell clusters composed of either non-tumorigenic or tumorigenic cells. We observe a decrease in migration distance and speed for non-tumorigenic cells but not for tumorigenic ones. To explain these differences, we investigate how osmotic stress impacts the mechanical properties of cell clusters and affects their volumes. Our findings show that tumorigenic mesenchymal cells are less sensitive to osmotic stress than non-tumorigenic cells and suggest that this difference is associated with a lower expression of E-cadherin. Using EGTA treatments, we confirm that the establishment of cell-cell adhesive interactions is a key component of the behavior of cell clusters in response to osmotic stress. This study provides evidence on the low sensitivity of mesenchymal tumorigenic clusters to moderate osmotic stress and highlights the importance of cadherin-based junctions in the response to osmotic stress.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinogênese/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pressão Osmótica/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/patologia , Comunicação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Cães , Transição Epitelial-Mesenquimal/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Células-Tronco Mesenquimais/patologia
9.
Sci Rep ; 11(1): 5811, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712641

RESUMO

The ability of cells to respond to substrate-bound protein gradients is crucial for many physiological processes, such as immune response, neurogenesis and cancer cell migration. However, the difficulty to produce well-controlled protein gradients has long been a limitation to our understanding of collective cell migration in response to haptotaxis. Here we use a photopatterning technique to create circular, square and linear fibronectin (FN) gradients on two-dimensional (2D) culture substrates. We observed that epithelial cells spread preferentially on zones of higher FN density, creating rounded or elongated gaps within epithelial tissues over circular or linear FN gradients, respectively. Using time-lapse experiments, we demonstrated that the gap closure mechanism in a 2D haptotaxis model requires a significant increase of the leader cell area. In addition, we found that gap closures are slower on decreasing FN densities than on homogenous FN-coated substrate and that fresh closed gaps are characterized by a lower cell density. Interestingly, our results showed that cell proliferation increases in the closed gap region after maturation to restore the cell density, but that cell-cell adhesive junctions remain weaker in scarred epithelial zones. Taken together, our findings provide a better understanding of the wound healing process over protein gradients, which are reminiscent of haptotaxis.

10.
Adv Sci (Weinh) ; 7(22): 2002643, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240781

RESUMO

Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization. However, biomechanical characterization of PM remains limited mainly due to the difficulties encountered to investigate it in a quantitative and label-free manner. Here, the biomechanical properties of PM of a series of MCF10 cell lines, used as a model of breast cancer progression, are investigated. Notably, a strong correlation between the cell PM elasticity and oncogenesis is observed. The altered membrane composition under cancer progression, as emphasized by the PM-associated cholesterol levels, leads to a stiffening of the PM that is uncoupled from the elastic cytoskeletal properties. Conversely, cholesterol depletion of metastatic cells leads to a softening of their PM, restoring biomechanical properties similar to benign cells. As novel therapies based on targeting membrane lipids in cancer cells represent a promising approach in the field of anticancer drug development, this method contributes to deciphering the functional link between PM lipid content and disease.

11.
Biotechnol Bioeng ; 117(9): 2887-2896, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32484903

RESUMO

The development of epithelial lumens in ducts is essential to the functioning of various organs and in organogenesis. Ductal elongation requires the collective migration of cell cohorts in three-dimensional (3D) confined spaces, while maintaining their epithelial integrity. Epithelial lumens generally adopt circular morphologies, however abnormalities in complex physiological environments can lead to the narrowing of glandular spaces that adopt elongated and slit-like morphologies. Here, we describe a simple method to form epithelial tissues in microchannels of various widths (100-300 µm) with a constant height of 25 µm that mimic elongated geometries of glandular spaces. The significance of this biomimetic platform has been evidenced by studying the migration of epithelial cell sheets inside these narrow slits of varying dimensions. We show that the growth of epithelial tissues in 3D-confined slits leads to a gradient of cell density along the slit axis and that the migration cell velocity depends on the extent of the spatial confinement. Our findings indicate that nuclear orientation is higher for leader cells and depends on the slit width, whereas YAP protein was predominantly localized in the nucleus of leader cells. This method will pave the way to studies aiming at understanding how 3D-confined spaces, which are reminiscent of in vivo pathological conditions, can affect the growth and the homeostasis of epithelial tissues.


Assuntos
Movimento Celular/fisiologia , Epitélio/metabolismo , Microtecnologia/instrumentação , Técnicas de Cultura de Tecidos , Animais , Núcleo Celular/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Desenho de Equipamento , Células Madin Darby de Rim Canino , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
12.
Cell Mol Bioeng ; 13(1): 87-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030110

RESUMO

INTRODUCTION: The orientation of collagen fibers in native tissues plays an important role in cell signaling and mediates the progression of tumor cells in breast cancer by a contact guidance mechanism. Understanding how migration of epithelial cells is directed by the alignment of collagen fibers requires in vitro assays with standardized orientations of collagen fibers. METHODS: To address this issue, we produced micro-stripes with aligned collagen fibers using an easy-to-use and versatile approach based on the aspiration of a collagen solution within a microchannel. Glass coverslips were functionalized with a (3-aminopropyl)triethoxysilane/glutaraldehyde linkage to covalently anchor micro-stripes of aligned collagen fibers, whereas microchannels were functionalized with a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nonionic triblock polymer to prevent adhesion of the collagen micro-stripes. RESULTS: Using this strategy, microchannels can be peeled off to expose micro-stripes of aligned collagen fibers without affecting their mechanical integrity. We used time-lapse confocal reflection microscopy to characterize the polymerization kinetics of collagen networks for different concentrations and the orientation of collagen fibers as a function of the microchannel width. Our results indicate a non-linear concentration dependence of the area of fluorescence, suggesting that the architecture of collagen networks is sensitive to small changes in concentration. We show the possibility to influence the collagen fibril coverage by adjusting the concentration of the collagen solution. CONCLUSION: We applied this novel approach to study the migration of epithelial cells, demonstrating that collagen micro-stripes with aligned fibers represent a valuable in-vitro assay for studying cell contact guidance mechanisms.

13.
Sci Rep ; 9(1): 15565, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664178

RESUMO

Skeletal muscle fibers are formed by the fusion of mononucleated myoblasts into long linear myotubes, which differentiate and reorganize into multinucleated myofibers that assemble in bundles to form skeletal muscles. This fundamental process requires the elongation of myoblasts into a bipolar shape, although a complete understanding of the mechanisms governing skeletal muscle fusion is lacking. To address this question, we consider cell aspect ratio, actomyosin contractility and the Hippo pathway member YAP as potential regulators of the fusion of myoblasts into myotubes. Using fibronectin micropatterns of different geometries and traction force microscopy, we investigated how myoblast elongation affects actomyosin contractility. Our findings indicate that cell elongation enhances actomyosin contractility in myoblasts, which regulate their actin network to their spreading area. Interestingly, we found that the contractility of cell pairs increased after their fusion and raise on elongated morphologies. Furthermore, our findings indicate that myoblast elongation modulates nuclear orientation and triggers cytoplasmic localization of YAP, increasing evidence that YAP is a key regulator of mechanotransduction in myoblasts. Taken together, our findings support a mechanical model where actomyosin contractility scales with myoblast elongation and enhances the differentiation of myoblasts into myotubes through YAP nuclear export.


Assuntos
Actomiosina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Actinas/genética , Actomiosina/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Forma Celular/genética , Tamanho Celular , Fibronectinas/genética , Via de Sinalização Hippo , Camundongos , Contração Muscular/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Proteínas de Sinalização YAP
14.
Artigo em Inglês | MEDLINE | ID: mdl-31380357

RESUMO

Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in "outside-in" and "inside-out" signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.

15.
Cell Adh Migr ; 11(1): 98-109, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27111836

RESUMO

The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.


Assuntos
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Microtecnologia/métodos , Estresse Mecânico , Actomiosina/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Movimento Celular , Forma do Núcleo Celular , Forma Celular , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Cinética , Lamina Tipo A/metabolismo , Fatores de Tempo
16.
Cell Adh Migr ; 11(5-6): 447-463, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-27791462

RESUMO

The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.


Assuntos
Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Lamina Tipo A/metabolismo , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibroblastos , Humanos , Interleucina-6/metabolismo , Lamina Tipo A/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteoma/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Cicatrização/fisiologia
17.
Sci Rep ; 6: 34141, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27678055

RESUMO

Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvß3 or α5ß1 integrins, we show that αVß3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5ß1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvß3 and α5ß1 integrins in the molecular clutch model.

19.
Biomaterials ; 89: 14-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26946402

RESUMO

The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Córtex Cerebelar/citologia , Laminina/química , Rede Nervosa/citologia , Neurônios/citologia , Polilisina/química , Potenciais de Ação , Animais , Adesão Celular , Técnicas de Cultura de Células , Movimento Celular , Células Cultivadas , Módulo de Elasticidade , Ratos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA