Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117929, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31918153

RESUMO

The current study explores the use of quercetin for developing a highly selective spectrofluorimetric methodology for trace determination, speciation and thermodynamic characterization of tungstate (WO42-) species in water. The study relies on the principle of chelate formation between WO42- and quercetin with subsequent increase in the emission intensity. The developed method could be applied successfully in a wide linear range (1.0-400.0 µg L-1) with a detection limit of 0.28 µg L-1 and quantification limit of 0.92 µg L-1 at λex/em = 400/492 nm. The developed method was successfully applied in real tap and waste water samples. The suitability of the proposed method was further validated by inductively coupled plasma-optical emission spectrometry (ICP-OES) in terms of student's t and F tests at 95% confidence. Characterization (NMR, FTIR and electronic spectra), stoichiometry, stability constant, fluorescence mechanism and thermodynamic parameters (ΔH, ΔS, and ΔG) of the produced complex species were evaluated and properly assigned. The fluorescence quenching mechanism of tungstate quercetin complex by Triton X-100 was also evaluated for computing Stern-Volmer quenching constant and approximating quenching sphere. The method showed a clear significance over most of the reported methods for tungsten in literature in terms of good accuracy, robustness, ruggedness, short analytical time and cost-effectiveness.

2.
Crit Rev Anal Chem ; 50(6): 485-500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486337

RESUMO

The evolution in foodstuff-monitoring processes has increased the number of studies on biogenic amines (BAs), in recent years. This trend with future perspective needs to be assembled to address the associated health risks. Thus, this study aims to cover three main aspects of BAs: (i) occurrence, physiology, and toxicological effects, most probable formation mechanisms and factors controlling their growth; (ii) recent advances, strategies for determination, preconcentration steps, model technique, and nature of the matrix; and (iii) milestone, limitations with existing methodologies, future trends, and detailed expected developments for clinical use and on-site ultra-trace determination. The core of the ongoing review will discuss recent trends in pre-concentration toward miniaturization, automation, and possible coupling with electrochemical techniques, surface-enhanced Raman scattering, spectrofluorimetry, and lateral flow protocols to be exploited for the development of rapid, facile, and sensitive on-site determination strategies for BAs.


Assuntos
Aminas Biogênicas/análise , Técnicas de Química Analítica/métodos , Animais , Análise de Alimentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA