Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(5): 103981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38595960

RESUMO

Aquaculture is a rapidly expanding food sector worldwide; it is the farming of fish, shellfish, and other marine organisms. Microplastics (MPs) are small pieces of plastic with a diameter of less than 5 mm that end up in the marine environment. MPs are fragments of large plastics that take years to degrade but can frustrate into small pieces, and some commercially available MPs are used in the production of toothpaste, cosmetics, and aircraft. MPs are emerging contaminants; they are ingested by marine species. These MPs have effects on marine species such as growth retardation and particle translocation to other parts of the body. Recently, MPs accumulation has been observed in shrimps, as well as in a wide range of other scientific reports. So, in this study, we review the presence, accumulation, and causes of MPs in shrimp. These plastics can trophic transfer to other organisms, changes in plastic count, effects on the marine environment, and impacts of MPs on human health were also discussed. It also improves our understanding of the importance of efficient plastic waste management in the ocean, as well as the impact of MPs on marine biota and human health.

2.
Mar Environ Res ; 196: 106412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428316

RESUMO

Plastics have widespread applications for human use, but their disposal poses a significant threat to living organisms and these plastics end up in the marine environment. They will be fragmented into small pieces as a result of ultraviolet exposure, climatic changes, and temperature changes; Microplastics (MPs) are plastics that are less than 5 mm in size. The level of MP (Microplastic) pollution in commercially harvested fish from different habitant in Vellore, India is currently unknown. Therefore, this study aimed to determine the presence and characteristics of ingested or inhaled MPs in marine and freshwater fishes highly consumed by the local population. Fish gills and gastrointestinal tracts were aseptically dissected and digested (30% hydrogen peroxide), then filtered and examined under a microscope for the presence of MPs. Further analysis was performed on the samples using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDAX). Of the samples analysed, a total of 875 MPs were recovered from 32 fishes, with 478 from marine fishes and 397 from freshwater fishes. The most common colours of the MPs were blue and black, while stereo microscopy analysis revealed that the majority of MPs were fibers (91%), followed by fragments (8%) and a small number of films. The ATR-FTIR analysis identified polyvinyl alcohol (39.76%), polyethylene (16.51%), methylcellulose (12.84%) and styrene (9.07%), as the predominant types of MPs in the fish samples. This study highlights the significant impact of MP pollution on marine ecosystems. The research provides insight into the nature and extent of MPs in fish from both marine and freshwater habitats, with an aim for policies and interventions aimed to reduce plastic pollution in the locality.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/análise , Plásticos , Ecossistema , Monitoramento Ambiental , Peixes , Poluentes Químicos da Água/análise
3.
Sci Rep ; 13(1): 22933, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129567

RESUMO

Megaselia scalaris, commonly known as the scuttle fly, is a cosmopolitan species in the family Phoridae. It is an easily cultured fly species that is an emerging model organism in the fields of genetics and developmental biology. Its affinity for carrion and its predictable life cycle makes it useful in the field of forensic science for estimating the post-mortem interval (PMI) of human remains. Cases of human myasis caused by M. scalaris have also been reported in the medical literature. Despite its ubiquitous prevalence and its relevance across multiple fields, its morphology has not been adequately characterized. Here, we report the complete morphological characterization of all lifestages of M. scalaris, ranging from egg to adult. Scanning electron microscopy has enabled us to uncover morphological features and developmental processes that have previously not been reported in the literature. Our data lays the groundwork for future genetic studies: a morphological characterization of the wild type must be performed before mutants displaying different phenotypes can be identified. In this vein, we also report the observation of a acephalic, or 'headless', adult phenotype whose study could yield insights into the process of cephalogenesis. Finally, all morphological features observed have been compiled into an 'atlas' that should be of use to all workers in the field.


Assuntos
Dípteros , Adulto , Animais , Humanos , Larva/anatomia & histologia , Dípteros/genética , Estágios do Ciclo de Vida , Ciências Forenses , Autopsia
4.
BMC Genomics ; 23(1): 614, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008758

RESUMO

BACKGROUND: The use of archived formalin-fixed paraffin-embedded (FFPE) tumor tissues has become a common practice in clinical and epidemiologic genetic research. Simultaneous extraction of DNA and RNA from FFPE tissues is appealing but can be practically challenging. Here we report our results and lessons learned from processing FFPE breast tumor tissues for a large epidemiologic study. METHODS: Qiagen AllPrep DNA/RNA FFPE kit was adapted for dual extraction using tissue punches or sections from breast tumor tissues. The yield was quantified using Qubit and fragmentation analysis by Agilent Bioanalyzer. A subset of the DNA samples were used for genome-wide DNA methylation assays and RNA samples for sequencing. The QC metrices and performance of the assays were analyzed with pre-analytical variables. RESULTS: A total of 1859 FFPE breast tumor tissues were processed. We found it critical to adjust proteinase K digestion time based on tissue volume to achieve balanced yields of DNA and RNA. Tissue punches taken from tumor-enriched regions provided the most reliable output. A median of 1475 ng DNA and 1786 ng RNA per sample was generated. The median DNA integrity number (DIN) was 3.8 and median DV200 for RNA was 33.2. Of 1294 DNA samples used in DNA methylation assays, 97% passed quality check by qPCR and 92% generated data deemed high quality. Of the 130 RNA samples with DV200 ≥ 20% used in RNA-sequencing, all but 5 generated usable transcriptomic data with a mapping rate ≥ 60%. CONCLUSIONS: Dual DNA/RNA purification using Qiagen AllPrep FFPE extraction protocol is feasible for clinical and epidemiologic studies. We recommend tissue punches as a reliable source material and fine tuning of proteinase K digestion time based on tissue volume. IMPACT: Our protocol and recommendations may be adapted by future studies for successful extraction of archived tumor tissues.


Assuntos
Neoplasias da Mama , RNA , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , DNA/genética , Endopeptidase K , Feminino , Formaldeído , Humanos , Inclusão em Parafina/métodos , RNA/genética , Fixação de Tecidos/métodos
5.
Front Immunol ; 12: 740620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867962

RESUMO

While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.


Assuntos
Proteínas de Anfíbios/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Anuros , Apoptose/imunologia , Interleucina-6/imunologia , Neoplasias/imunologia , Animais , Linhagem Celular Tumoral , Humanos
6.
Front Cell Dev Biol ; 9: 668851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150761

RESUMO

A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.

7.
Front Oncol ; 11: 669250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968778

RESUMO

In view of the importance of cancer stem cells (CSCs) in chemoresistance, metastasis and recurrence, the biology of CSCs were explored in detail. Based on that, several modalities were proposed to target them. In spite of the several clinical trials, a successful CSC-targeting drug is yet to be identified. The number of molecules screened and entered for clinical trial for CSC-targeting is comparatively low, compared to other drugs. The bottle neck is the lack of a high-throughput adaptable screening strategy for CSCs. This review is aimed to identify suitable reporters for CSCs that can be used to identify the heterogeneous CSC populations, including quiescent CSCs, proliferative CSCs, drug resistant CSCs and metastatic CSCs. Analysis of the tumor microenvironment regulating CSCs revealed that the factors in CSC-niche activates effector molecules that function as CSC markers, including pluripotency markers, CD133, ABCG2 and ALDH1A1. Among these factors OCT4, SOX2, NANOG, ABCG2 and ALDH1A1 are ideal for making reporters for CSCs. The pluripotency molecules, like OCT4, SOX2 and NANOG, regulate self-renewal, chemoresistance and metastasis. ABCG2 is a known regulator of drug resistance while ALDH1A1 modulates self-renewal, chemoresistance and metastasis. Considering the heterogeneity of CSCs, including a quiescent population and a proliferative population with metastatic ability, we propose the use of a combination of reporters. A dual reporter consisting of a pluripotency marker and a marker like ALDH1A1 will be useful in screening drugs that target CSCs.

8.
Front Oncol ; 11: 788024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004310

RESUMO

Recent advancements in cancer research have shown that cancer stem cell (CSC) niche is a crucial factor modulating tumor progression and treatment outcomes. It sustains CSCs by orchestrated regulation of several cytokines, growth factors, and signaling pathways. Although the features defining adult stem cell niches are well-explored, the CSC niche is poorly characterized. Since membrane trafficking proteins have been shown to be essential for the localization of critical proteins supporting CSCs, we investigated the role of TUBB4B, a probable membrane trafficking protein that was found to be overexpressed in the membranes of stem cell enriched cultures, in sustaining CSCs in oral cancer. Here, we show that the knockdown of TUBB4B downregulates the expression of pluripotency markers, depletes ALDH1A1+ population, decreases in vitro sphere formation, and diminishes the tumor initiation potential in vivo. As TUBB4B is not known to have any role in transcriptional regulation nor cell signaling, we suspected that its membrane trafficking function plays a role in constituting a CSC niche. The pattern of its expression in tissue sections, forming a gradient in and around the CSCs, reinforced the notion. Later, we explored its possible cooperation with a signaling protein, Ephrin-B1, the abrogation of which reduces the self-renewal of oral cancer stem cells. Expression and survival analyses based on the TCGA dataset of head and neck squamous cell carcinoma (HNSCC) samples indicated that the functional cooperation of TUBB4 and EFNB1 results in a poor prognosis. We also show that TUBB4B and Ephrin-B1 cohabit in the CSC niche. Moreover, depletion of TUBB4B downregulates the membrane expression of Ephrin-B1 and reduces the CSC population. Our results imply that the dynamics of TUBB4B is decisive for the surface localization of proteins, like Ephrin-B1, that sustain CSCs by their concerted signaling.

9.
Exp Cell Res ; 383(2): 111551, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31401066

RESUMO

Cancer stem cells (CSCs) are a subset of cancer cells, which possess self-renewal ability, and lead to tumor progression, metastasis, and resistance to therapy. Live detection and isolation of CSCs are important to understand the biology of CSCs as well as to screen drugs that target them. Even though CSCs are detected using surface markers, there is a lot of inconsistencies for that in a given cancer type. At the same time, self-renewal markers like ALDH1A1, OCT4A and SOX2, which are intracellular molecules, are reliable markers for CSCs in different cancers. In the present study, we generated a reporter construct for self-renewing CSCs, based on ALDH1A1 expression. Oral cancer cells harboring ALDH1A1-DsRed2 were used to screen inhibitors that target CSCs. Our results showed that Comb1, a cocktail of inhibitors for EGF and TGF-ß pathways and their intermediates, effectively reduced the DsRed2 population to 34%. Our immunohistochemical analysis on primary oral cancer corroborated the importance of EGF and TGF-ß pathways in sustaining CSCs. Since these two pathways are also critical for the self-renewal and differentiation of normal stem cells, Comb1 might abolish them as well. On analysis of the effect of Comb1 on normal murine bone marrow cells, there was no significant change in the stem cell self-renewal and differentiation potential in the treated group compared to untreated cells. To conclude, we claim that ALDH1A1-DsRed2 is a useful tool to detect CSCs, and Comb1 is effective in targeting CSCs without affecting normal stem cells.


Assuntos
Família Aldeído Desidrogenase 1/genética , Antineoplásicos/isolamento & purificação , Biomarcadores Tumorais/genética , Genes Reporter , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Retinal Desidrogenase/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Família Aldeído Desidrogenase 1/metabolismo , Animais , Antineoplásicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Retinal Desidrogenase/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química
10.
Oral Oncol ; 75: 140-147, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29224811

RESUMO

OBJECTIVE: The purpose of this study was to determine association between cancer stem cells (CSCs) and their niche with progression of oral potentially malignant disorders. MATERIALS AND METHODS: Patients with histologically confirmed oral potentially malignant disorders, stratified into high/low risk lesions based on the degree of dysplasia and oral cancer were included in this study. Immunohistochemical profiling of markers of CSCs (CD44), endothelial cells (CD31) and CSC-vascular niche cross-talk (CXCR4 and SDF1) were carried out. Statistical analysis was performed to correlate the relationship of markers with histopathology grade (ANOVA, and χ2 test, unpaired t test) using GraphPad InStat v3.06. RESULTS: The study included 550 samples (349 patients) and analysis showed progressive increase in expression levels of CSC and its niche markers with increase in grade of dysplasia as compared to the normal cohort (p < 0.05). Co-expression analysis revealed that, in comparison to the normal cohort, a larger percentage of patients showed increased expression of CD31 and CD44 (CD31high/CD44high; p < 0.05) and of CXCR4 and SDF1 (CXCR4high/SDF1high; p = 0.04), suggesting an association of the CSCs and the vascular niche. Further, distribution of patients with CD44high/CXCR4high (p < 0.05) and CD31high/SDF1high (p = 0.01) was significantly increased in the high-risk group (18%), suggesting a correlation between CD44+/CXCR4+ cells, the vascular niche and progression of oral dysplastic lesions. CONCLUSION: The increased expression of CSCs, the vascular niche and their cross talk markers are associated with increase in severity of dysplasia suggesting their role in the progression of oral potentially malignant disorders and may hence be used in identifying high-risk OPMD.


Assuntos
Progressão da Doença , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Quimiocina CXCL12/metabolismo , Estudos de Coortes , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores CXCR4/metabolismo , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA