Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 4: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057902

RESUMO

Nonlinear response of dielectric polarization to electric field in certain media is the foundation of nonlinear optics. Optically, such nonlinearities are observed at high light intensities, achievable by laser, where atomic-scale field strengths exceeding 106-108 V/m can be realized. Nonlinear optics includes a host of fascinating phenomena such as higher harmonic frequency generation, sum and difference frequency generation, four-wave mixing, self-focusing, optical phase conjugation, and optical rectification. Even though nonlinear optics has been studied for more than five decades, such studies in analogous acoustic or microwave frequency ranges are yet to be realized. Here, we demonstrate a nonlinear dielectric resonator composed of a silicon micromechanical resonator with an aluminum nitride piezoelectric layer, a material known to have a nonlinear optical susceptibility. Using a novel multiport approach, we demonstrate second and third-harmonic generation, sum and difference frequency generation, and four-wave mixing. Our demonstration of a nonlinear dielectric resonator opens up unprecedented possibilities for exploring nonlinear dielectric effects in engineered structures with an equally broad range of effects such as those observed in nonlinear optics. Furthermore, integration of a nonlinear dielectric layer on a chip-scale silicon micromechanical resonator offers tantalizing prospects for novel applications, such as ultra high harmonic generation, frequency multipliers, microwave frequency-comb generators, and nonlinear microwave signal processing.

2.
Sci Rep ; 7(1): 16056, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167498

RESUMO

Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

3.
Sci Rep ; 7(1): 411, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28341856

RESUMO

Towards practical realization of brain-inspired computing in a scalable physical system, we investigate a network of coupled micromechanical oscillators. We numerically simulate this array of all-to-all coupled nonlinear oscillators in the presence of stochasticity and demonstrate its ability to synchronize and store information in the relative phase differences at synchronization. Sensitivity of behavior to coupling strength, frequency distribution, nonlinearity strength, and noise amplitude is investigated. Our results demonstrate that neurocomputing in a physically realistic network of micromechanical oscillators with silicon-based fabrication process can be robust against noise sources and fabrication process variations. This opens up tantalizing prospects for hardware realization of a low-power brain-inspired computing architecture that captures complexity on a scalable manufacturing platform.


Assuntos
Memória , Redes Neurais de Computação , Dinâmica não Linear , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Modelos Teóricos , Oscilometria/métodos , Fenômenos Físicos
4.
Microsyst Nanoeng ; 3: 17026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057867

RESUMO

Wireless transfer of information is the basis of modern communication. It includes cellular, WiFi, Bluetooth, and GPS systems, all of which use electromagnetic radio waves with frequencies ranging from typically 100 MHz to a few GHz. However, several long-standing challenges with standard radio-wave wireless transmission still exist, including keeping secure transmission of data from potential compromise. Here, we demonstrate wireless information transfer using a line-of-sight optical architecture with a micromechanical element. In this fundamentally new approach, a laser beam encoded with information impinges on a nonlinear micromechanical resonator located a distance from the laser. The force generated by the radiation pressure of the laser light on the nonlinear micromechanical resonator produces a sideband modulation signal, which carries the precise information encoded in the subtle changes in the radiation pressure. Using this, we demonstrate data and image transfer with one hundred percent fidelity with a single 96-by-270 µm silicon resonator element in an optical frequency band. This mechanical approach relies only on the momentum of the incident photons and is therefore able to use any portion of the optical frequency band-a band that is 10 000 times wider than the radio frequency band. Our line-of-sight architecture using highly scalable micromechanical resonators offers new possibilities in wireless communication. Due to their small size, these resonators can be easily arrayed while maintaining a small form factor to provide redundancy and parallelism.

5.
Microsyst Nanoeng ; 2: 16036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057830

RESUMO

The wireless transfer of power is of fundamental and technical interest, with applications ranging from the remote operation of consumer electronics and implanted biomedical devices and sensors to the actuation of devices for which hard-wired power sources are neither desirable nor practical. In particular, biomedical devices that are implanted in the body or brain require small-footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. Moreover, for fundamental experiments, the ultralow-power wireless operation of micromechanical resonators in the microwave range can enable the performance of low-temperature studies of mechanical systems in the quantum regime, where the heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. Here we demonstrate the successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies ranging from 36 to 120 MHz at power levels of nanowatts and distances of ~3 feet, including comprehensive polarization, distance and power dependence measurements. Our unprecedented demonstration of the wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels may enable a multitude of applications that require the wireless control of sensors and actuators based on micromechanical resonators, which was inaccessible until now.

6.
Nano Lett ; 14(1): 89-93, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328764

RESUMO

Irreversible logic operations inevitably discard information, setting fundamental limitations on the flexibility and the efficiency of modern computation. To circumvent the limit imposed by the von Neumann-Landauer (VNL) principle, an important objective is the development of reversible logic gates, as proposed by Fredkin, Toffoli, Wilczek, Feynman, and others. Here, we present a novel nanomechanical logic architecture for implementing a Fredkin gate, a universal logic gate from which any reversible computation can be built. In addition to verifying the truth table, we demonstrate operation of the device as an AND, OR, NOT, and FANOUT gate. Excluding losses due to resonator dissipation and transduction, which will require significant improvement in order to minimize the overall energy cost, our device requires an energy of order 10(4) kT per logic operation, similar in magnitude to state-of-the-art transistor-based technologies. Ultimately, reversible nanomechanical logic gates could play a crucial role in developing highly efficient reversible computers, with implications for efficient error correction and quantum computing.

7.
Nano Lett ; 13(9): 4014-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23953003

RESUMO

We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.


Assuntos
Diamante/química , Nanotecnologia , Nanoestruturas/química , Transdutores
8.
Nano Lett ; 9(9): 3096-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19685903

RESUMO

We report signal amplification by 1/f(alpha) noise with stochastic resonance in a nonlinear nanomechanical resonator. The addition of 1/f(alpha) noise to a subthreshold modulation signal enhances the probability of an electrostatically driven resonator switching between its two vibrational states in the hysteretic region. Considering the prevalence of 1/f noise in the materials in integrated circuits, signal enhancement demonstrated here, using a fully on-chip electronic actuation/detection scheme, suggests beneficial use of the otherwise detrimental noise.


Assuntos
Nanotecnologia/instrumentação , Silício , Simulação por Computador , Eletrodos , Eletrônica/instrumentação , Dinâmica não Linear , Ondas de Rádio , Eletricidade Estática , Processos Estocásticos , Fatores de Tempo , Vibração
9.
Nat Nanotechnol ; 3(12): 720-3, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057590

RESUMO

Electrons and other fundamental particles have an intrinsic angular momentum called spin. A change in the spin state of such a particle is therefore equivalent to a mechanical torque. This spin-induced torque is central to our understanding of experiments ranging from the measurement of the angular momentum of photons and the g-factor of metals to magnetic resonance and magnetization reversal in magnetic multilayers. When a spin-polarized current passes through a metallic nanowire in which one half is ferromagnetic and the other half is nonmagnetic, the spins of the itinerant electrons are 'flipped' at the interface between the two regions to produces a torque. Here, we report direct measurement of this mechanical torque in an integrated nanoscale torsion oscillator, and measurements of the itinerant electron spin polarization that could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 1 x 10(-22) N-m Hz(-1/2) may have applications in spintronics and precision measurements of charge-parity-violating forces, and might also enable experiments on the untwisting of DNA and torque-generating molecules.


Assuntos
Nanotecnologia/métodos , Nanofios , Algoritmos , Elétrons , Compostos Férricos , Magnetismo , Oscilometria , Torque
10.
Science ; 316(5821): 95-9, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17412955

RESUMO

We report measurements of synchronization in two nanomechanical beam oscillators coupled by a mechanical element. We charted multiple regions of frequency entrainment or synchronization by their corresponding Arnold's tongue diagrams as the oscillator was driven at subharmonic and rational commensurate frequencies. Demonstration of multiple synchronized regions could be fundamentally important to neurocomputing with mechanical oscillator networks and nanomechanical signal processing for microwave communication.

11.
Phys Rev Lett ; 96(18): 186105, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712378

RESUMO

Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the study of microscopic protein dynamics. Here we study the stochastic response of biofunctionalized nanomechanical cantilever beams in a viscous fluid. Using the fluctuation-dissipation theorem we derive an exact expression for the spectral density of displacement and a linear approximation for resonance frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is determined by surface stress generated by biomolecular interaction with negligible contributions from mass loading due to the biomolecules.

12.
Nature ; 437(7061): 995-8, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16222295

RESUMO

Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

14.
Phys Rev Lett ; 94(3): 030402, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698242

RESUMO

We report the observation of discrete displacement of nanomechanical oscillators with gigahertz-range resonance frequencies at millikelvin temperatures. The oscillators are nanomachined single-crystal structures of silicon, designed to provide two distinct sets of coupled elements with very low and very high frequencies. With this novel design, femtometer-level displacement of the frequency-determining element is amplified into collective motion of the entire micron-sized structure. The observed discrete response possibly results from energy quantization at the onset of the quantum regime in these macroscopic nanomechanical oscillators.

15.
Phys Rev Lett ; 90(8): 085504, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633438

RESUMO

Dissipation of micro- and nanoscale mechanical structures is dominated by quantum-mechanical tunneling of two-level defects intrinsically present in the system. We find that at high frequencies-usually, for smaller, micron-scale structures-a novel mechanism of phonon pumping of two-level defects gives rise to weakly temperature-dependent internal friction, Q-1, concomitant to the effects observed in recent experiments. Because of their size, comparable to or shorter than the emitted phonon wavelength, these structures suffer from superradiance-enhanced dissipation by the collective relaxation of a large number of two-level defects contained within the wavelength.

16.
Phys Rev Lett ; 88(14): 146601, 2002 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-11955164

RESUMO

We report measurements of conductance distribution in a set of quasi-one-dimensional gold wires. The distribution includes the second cumulant or the variance which describes the universal conductance fluctuations, and the third cumulant which denotes the leading deviation. We have observed an asymmetric contribution--or, a nonvanishing third cumulant--contrary to the expectation for quasi-one-dimensional systems in the noninteracting theories in the one-parameter scaling framework, which include the perturbative diagrammatic calculations and the random matrix theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA