Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glycoconj J ; 39(6): 711-724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227524

RESUMO

The Human Betaherpesviruses HHV-5 and HHV-6 are quite inimical in immunocompromised hosts individually. A co-infection of both has been surmised to be far more disastrous. This can be attributed to a synergetic effect of their combined pathologies. While there have been attempts to develop a vaccine against each virus, no efforts were made to contrive an effective prophylaxis for the highly detrimental co-infection. In this study, an ensemble of viral envelope glycoproteins from both the viruses was utilized to design a multi-epitope vaccine using immunoinformatics tools. A collection of bacterial protein toll-like receptor agonists (BPTAs) was screened to identify a highly immunogenic adjuvant for the vaccine construct. The constructed vaccine was analysed using an array of methodologies ranging from World population coverage analysis to Immune simulation, whose results indicate high vaccine efficacy and stability. Furthermore, codon optimization and in silico cloning analysis were performed to check for efficient expression in a bacterial system. Collectively, these findings demonstrate the potential of the constructed vaccine to elicit an immune response against HHV-5 and HHV-6, thus supporting the viability of in vitro and in vivo studies.


Assuntos
Coinfecção , Herpesvirus Humano 6 , Vacinas , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Citomegalovirus/metabolismo , Epitopos de Linfócito T , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
2.
Front Mol Biosci ; 9: 848971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359598

RESUMO

Multimorbidity, the simultaneous presence of two or more chronic diseases, affects the health care to a great extent. Its association with health care cost, more disability, and poor quality of life makes it a major public health risk. The matter of worry is that management of a multimorbid condition is complicated by the fact that multiple types of treatment may be required to treat different diseases at a time, and the interaction between some of the therapies can be detrimental. Understanding the causal factors of simultaneously occurring disease conditions and investigating the connected pathways involved in the whole process may resolve the complication. When different disease conditions present in an individual share common responsible factors, treatment strategies targeting at those common causes will certainly reduce the chance of development of multimorbidity occurring because of those factors. Metabolomics that can dig out the underlying metabolites/molecules of a medical condition is believed to be an effective technique for identification of biomarkers and intervention of effective treatment strategies for multiple diseases. We hypothesize that understanding the metabolic profile may shed light on targeting the common culprit for different/similar chronic diseases ultimately making the treatment strategy more effective with a combinatorial effect.

3.
Lab Med ; 53(4): 386-393, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246976

RESUMO

OBJECTIVE: Upregulation of matrix metalloproteinase-7 (MMP-7) is associated with hypertension and kidney fibrosis, which can progress to chronic kidney disease (CKD). Currently, kidney fibrosis is only detectable by an invasive procedure. Therefore, we set out to determine whether MMP-7 can act as a noninvasive biomarker in patients with hypertension to enable early detection of kidney fibrosis. MATERIALS AND METHODS: Diagnosed patients with hypertension and control patients were sampled. We diagnosed CKD using clinical and laboratory parameters. Serum urea, creatinine, urinary microalbumin, the albumin-to-creatinine ratio, and urinary MMP-7 were analyzed. RESULTS: The 195 patients with hypertension had significantly elevated MMP-7. Of these patients, 166 had MMP-7 >25.8 µg/L, whereas only 29 had MMP-7 <25.8 µg/L. Thirty-two patients with hypertension showed features of CKD, all of whom had urinary MMP-7 >25.8 µg/L. However, the urinary MMP-7 level did not differ with the severity of CKD or with the duration of hypertension. CONCLUSION: Elevated urinary MMP-7 can be a potential noninvasive, early indicator in patients with hypertension progressing to CKD, thus enabling early therapeutic intervention.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Biomarcadores , Creatinina , Fibrose , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Metaloproteinase 7 da Matriz/urina
4.
Front Immunol ; 12: 590532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679737

RESUMO

The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.


Assuntos
Homeostase , Hipóxia/metabolismo , Triptaminas/metabolismo , Triptofano/metabolismo , Animais , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hipóxia/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fígado/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/metabolismo
5.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818467

RESUMO

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Assuntos
L-Aminoácido Oxidase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioma/imunologia , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos
6.
Front Immunol ; 11: 657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477324

RESUMO

Catabolism of the essential amino acid tryptophan is a key metabolic pathway contributing to the immunosuppressive tumor microenvironment and therefore a viable drug target for cancer immunotherapy. In addition to the rate-limiting enzyme indoleamine-2,3-dioxygenase-1 (IDO1), tryptophan catabolism via tryptophan-2,3-dioxygenase (TDO2) is a feature of many tumors, particularly malignant gliomas. The pathways regulating TDO2 in tumors are poorly understood; using unbiased promoter and gene expression analyses, we identify a distinct CCAAT/enhancer-binding protein ß (C/EBPß) binding site in the promoter of TDO2 essential for driving constitutive TDO2 expression in glioblastoma cells. Using The Cancer Genome Atlas (TCGA) data, we find that C/EBPß expression is correlated with TDO2, and both are enriched in malignant glioma of the mesenchymal subtype and associated with poor patient outcome. We determine that TDO2 expression is sustained mainly by the LAP isoform of CEBPB and interleukin-1ß, which activates TDO2 via C/EBPß in a mitogen-activated protein kinase (MAPK) kinase-dependent fashion. In summary, we provide evidence for a novel regulatory and therapeutically targetable pathway of immunosuppressive tryptophan degradation in a subtype of glioblastoma with a particularly poor prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Glioblastoma/metabolismo , Regiões Promotoras Genéticas/genética , Triptofano Oxigenase/metabolismo , Biomarcadores Tumorais/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Carcinogênese , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Tolerância Imunológica , Interleucina-1beta/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais , Triptofano Oxigenase/genética
7.
Br J Cancer ; 122(1): 30-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819194

RESUMO

Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano/metabolismo , Animais , Humanos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Triptofano Oxigenase/metabolismo
8.
Rheumatology (Oxford) ; 59(5): 1148-1158, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846032

RESUMO

OBJECTIVE: The development of RA is linked to local infiltration of immune cells and to changes in the phenotype of synovial fibroblasts. Synovial fibroblasts possess the capacity to suppress T cell responses through indoleamine 2, 3-dioxygenase 1 (IDO1)-mediated tryptophan metabolism. However, synovial fibroblasts from RA patients are restricted in this immune-modulatory function. Moreover, hypoxic conditions are detected within synovial tissues of RA patients, with oxygen tensions of only 3.2% O2. This study aims at investigating the effects of hypoxia on the interaction between T cells and synovial fibroblasts, particularly on the T cell-suppressive capacities of synovial fibroblasts. METHODS: Synovial fibroblasts were cultured with Th cells under normoxic and hypoxic conditions (3% O2). Th cell proliferation was detected by flow cytometry. Tryptophan and kynurenine amounts were measured by HPLC. IDO1 expression and signal transducer and activator of transcription 1 (STAT1) phosphorylation were quantified by real-time PCR or western blot, and cytokine secretion by ELISA. RESULTS: Hypoxic conditions strongly diminished the Th cell-suppressive capacities of both OA synovial fibroblasts and RA synovial fibroblasts. Accordingly, IDO1 mRNA and protein expression, STAT1 phosphorylation and tryptophan metabolism were greatly reduced in OA synovial fibroblasts by hypoxia. MMP-3, IL-6, IL-10 and IFNγ secretion were significantly decreased under hypoxia in synovial fibroblast-Th cell co-cultures, while IL-17A levels were elevated. Supplementation with IFNγ, a well-known inducer of IDO1 expression, could rescue neither IDO1 expression nor Th cell suppression under hypoxic conditions. CONCLUSION: Hypoxia strongly affected the crosstalk between synovial fibroblasts and Th cells. By reducing the efficiency of synovial fibroblasts to restrict Th cell proliferation and by increasing the expression of IL-17A, hypoxia might have implications on the pathophysiology of RA.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Linfócitos T Auxiliares-Indutores/imunologia , Triptofano/metabolismo , Artrite Reumatoide/fisiopatologia , Western Blotting , Proliferação de Células , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Técnicas de Cocultura , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/imunologia , Citometria de Fluxo/métodos , Humanos , Hipóxia , Imunomodulação/imunologia , Interleucina-17/metabolismo , Masculino , Pessoa de Meia-Idade , Valores de Referência , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
9.
Front Immunol ; 10: 2762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866995

RESUMO

Abnormal circulation in solid tumors results in hypoxia, which modulates both tumor intrinsic malignant properties as well as anti-tumor immune responses. Given the importance of hypoxia in glioblastoma (GBM) biology and particularly in shaping anti-tumor immunity, we analyzed which immunomodulatory genes are differentially regulated in response to hypoxia in GBM cells. Gene expression analyses identified the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2) as the second most downregulated gene in GBM cells cultured under hypoxic conditions. TDO2 catalyses the oxidation of tryptophan to N-formyl kynurenine, which is the first and rate-limiting step of Trp degradation along the kynurenine pathway (KP). In multiple GBM cell lines hypoxia reduced TDO2 expression both at mRNA and protein levels. The downregulation of TDO2 through hypoxia was reversible as re-oxygenation rescued TDO2 expression. Computational modeling of tryptophan metabolism predicted reduced flux through the KP and lower intracellular concentrations of kynurenine and its downstream metabolite 3-hydroxyanthranilic acid under hypoxia. Metabolic measurements confirmed the predicted changes, thus demonstrating the ability of the mathematical model to infer intracellular tryptophan metabolite concentrations. Moreover, we identified hypoxia inducible factor 1α (HIF1α) to regulate TDO2 expression under hypoxic conditions, as the HIF1α-stabilizing agents dimethyloxalylglycine (DMOG) and cobalt chloride reduced TDO2 expression. Knockdown of HIF1α restored the expression of TDO2 upon cobalt chloride treatment, confirming that HIF1α controls TDO2 expression. To investigate the immunoregulatory effects of this novel mechanism of TDO2 regulation, we co-cultured isolated T cells with TDO2-expressing GBM cells under normoxic and hypoxic conditions. Under normoxia TDO2-expressing GBM cells suppressed T cell proliferation, while hypoxia restored the proliferation of the T cells, likely due to the reduction in kynurenine levels produced by the GBM cells. Taken together, our data suggest that the regulation of TDO2 expression by HIF1α may be involved in modulating anti-tumor immunity in GBM.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Triptofano Oxigenase/genética , Neoplasias Encefálicas/enzimologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Glioblastoma/enzimologia , Humanos , Tolerância Imunológica , Cinurenina/metabolismo , Ativação Linfocitária , Linfócitos T/imunologia , Triptofano/metabolismo
10.
Nat Commun ; 10(1): 4877, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653831

RESUMO

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.


Assuntos
Autoimunidade/imunologia , Dieta , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/imunologia , Triptofano , Animais , Proteínas Alimentares , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/microbiologia , Microbioma Gastrointestinal/genética , Camundongos , Esclerose Múltipla , RNA Ribossômico 16S/genética
11.
Oncoimmunology ; 7(12): e1486353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524887

RESUMO

Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.

12.
Amino Acids ; 49(7): 1169-1175, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28421297

RESUMO

Metabolism of the essential amino acid tryptophan (trp) is a key endogenous immunosuppressive pathway restricting inflammatory responses. Tryptophan metabolites promote regulatory T cell (Treg) differentiation and suppress proinflammatory T helper cell (Th)1 and Th17 phenotypes. It has been shown that treatment with natural and synthetic tryptophan metabolites can suppress autoimmune neuroinflammation in preclinical animal models. Here, we tested if oral intake of tryptophan would increase immunosuppressive tryptophan metabolites and ameliorate autoimmune neuroinflammation as a safe approach to treat autoimmune disorders like multiple sclerosis (MS). Without oral supplementation, systemic kynurenine levels decrease during the initiation phase of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, indicating systemic activation of tryptophan metabolism. Daily oral gavage of up to 10 mg/mouse/day was safe and increased serum kynurenine levels by more than 20-fold for more than 3 h after the gavage. While this treatment resulted in suppression of myelin-specific Th1 responses, there was no relevant impact on clinical disease activity. These data show that oral trp supplementation at subtoxic concentrations suppresses antigen-specific Th1 responses, but suggest that the increase in trp metabolites is not sustained enough to impact neuroinflammation.


Assuntos
Suplementos Nutricionais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Tolerância Imunológica/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Células Th1/imunologia , Triptofano/farmacologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia
13.
J Immunol ; 198(8): 3109-3117, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264972

RESUMO

The development of rheumatoid arthritis (RA) is linked to functional changes in synovial fibroblasts (SF) and local infiltration of T lymphocytes. Fibroblasts possess the capacity to suppress T cell responses, although the molecular mechanisms of this suppression remain incompletely understood. In this study, we aimed to define the mechanisms by which noninflammatory SF modulate Th cell responses and to determine the immunosuppressive efficacy of RASF. Hence, the influence of SF from osteoarthritis or RA patients on total Th cells or different Th cell subsets of healthy donors was analyzed in vitro. We show that SF strongly suppressed the proliferation of Th cells and the secretion of IFN-γ in a cell contact-independent manner. In cocultures of SF and Th cells, tryptophan was completely depleted within a few days, resulting in eukaryotic initiation factor 2α phosphorylation, TCRζ-chain downregulation, and proliferation arrest. Blocking IDO1 activity completely restored Th cell proliferation, but not IFN-γ production. Interestingly, only the proliferation of Th1 cells, but not of Th2 or Th17 cells, was affected. Finally, RASF had a significantly lower IDO1 expression and a weaker Th cell suppressive capacity compared with osteoarthritis SF. We postulate that the suppression of Th cell growth by SF through tryptophan catabolism may play an important role in preventing inappropriate Th cell responses under normal conditions. However, expansion of Th17 cells that do not induce IDO1-mediated suppression and the reduced capacity of RASF to restrict Th cell proliferation through tryptophan metabolism may support the initiation and propagation of synovitis in RA patients.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Th1/imunologia , Triptofano/metabolismo , Diferenciação Celular/imunologia , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Fibroblastos/metabolismo , Humanos , Immunoblotting , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Ativação Linfocitária/imunologia , Osteoartrite/imunologia , Reação em Cadeia da Polimerase , Membrana Sinovial/imunologia , Células Th17/imunologia , Células Th2/imunologia , Triptofano/imunologia
14.
Oncoimmunology ; 6(2): e1274477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344890

RESUMO

Kynurenine formation by tryptophan-catabolic indoleamine-2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune evasion and inhibition of IDO1 is efficacious in preclinical models of breast cancer. As the response of breast cancer to immune checkpoint inhibitors may be limited, a better understanding of the expression of additional targetable immunomodulatory pathways is of importance. We therefore investigated the regulation of IDO1 expression in different breast cancer subtypes. We identified estrogen receptor α (ER) as a negative regulator of IDO1 expression. Serum kynurenine levels as well as tumoral IDO1 expression were lower in patients with ER-positive than ER-negative tumors and an inverse relationship between IDO1 and estrogen receptor mRNA was observed across 14 breast cancer data sets. Analysis of whole genome bisulfite sequencing, 450k, MassARRAY and pyrosequencing data revealed that the IDO1 promoter is hypermethylated in ER-positive compared with ER-negative breast cancer. Reduced induction of IDO1 was also observed in human ER-positive breast cancer cell lines. IDO1 induction was enhanced upon DNA demethylation in ER-positive but not in ER-negative cells and methylation of an IDO1 promoter construct reduced IDO1 expression, suggesting that enhanced methylation of the IDO1 promoter suppresses IDO1 in ER-positive breast cancer. The association of ER overexpression with epigenetic downregulation of IDO1 appears to be a particular feature of breast cancer as IDO1 was not suppressed by IDO1 promoter hypermethylation in the presence of high ER expression in cervical or endometrial cancer.

15.
Sci Rep ; 7: 41271, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117398

RESUMO

The catabolism of tryptophan to immunosuppressive and neuroactive kynurenines is a key metabolic pathway regulating immune responses and neurotoxicity. The rate-limiting step is controlled by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO). IDO is expressed in antigen presenting cells during immune reactions, hepatic TDO regulates blood homeostasis of tryptophan and neuronal TDO influences neurogenesis. While the role of IDO has been described in multiple immunological settings, little is known about TDO's effects on the immune system. TDO-deficiency is neuroprotective in C. elegans and Drosophila by increasing tryptophan and specific kynurenines. Here we have determined the role of TDO in autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We created reporter-TDO mice for in vivo imaging to show that hepatic but not CNS TDO expression is activated during EAE. TDO deficiency did not influence myelin-specific T cells, leukocyte infiltration into the CNS, demyelination and disease activity. TDO-deficiency protected from neuronal loss in the spinal cord but not in the optic nerves. While this protection did not translate to an improved overt clinical outcome, our data suggest that spatially distinct neuroprotection is conserved in mammals and support TDO as a potential target for treatment of diseases associated with neurodegeneration.


Assuntos
Esclerose Múltipla/enzimologia , Esclerose Múltipla/prevenção & controle , Neuroproteção , Triptofano Oxigenase/deficiência , Animais , Diferenciação Celular , Sobrevivência Celular , Clonagem Molecular , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Genes Reporter , Inflamação/patologia , Fígado/enzimologia , Fígado/patologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Linfócitos T/imunologia , Triptofano Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA