Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992431

RESUMO

Salmonella myovirus SPN3US has a T = 27 capsid composed of >50 different gene products, including many that are packaged along with the 240 kb genome and ejected into the host cell. Recently, we showed that an essential phage-encoded prohead protease gp245 is responsible for cleavage of proteins during SPN3US head assembly. This proteolytic maturation step induces major changes in precursor head particles, enabling them to expand and undergo genome packaging. To comprehensively define the composition of the mature SPN3US head and elucidate how it is modified by proteolysis during assembly, we conducted tandem mass spectrometry analysis of purified virions and tailless heads. Fourteen protease cleavage sites were identified in nine proteins, including eight sites not previously identified in head proteins in vivo. Among these was the maturation cleavage site of gp245 which was identical to the autocleavage site we had previously identified in purified recombinant gp245. Our findings underscore the value of employing multiple mass spectrometry-based experimental strategies as a way to enhance the detection of head protein cleavage sites in tailed phages. In addition, our results have identified a conserved set of head proteins in related giant phages that are similarly cleaved by their respective prohead proteases, suggesting that these proteins have important roles in governing the formation and function of large icosahedral capsids.


Assuntos
Capsídeo , Peptídeo Hidrolases , Capsídeo/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo , Proteínas do Capsídeo/química , Salmonella , Endopeptidases/genética , Endopeptidases/metabolismo
2.
Viruses ; 12(7)2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635654

RESUMO

The head of Salmonella virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the Salmonella cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease. In this study, we present the characterization of SPN3US prohead protease mutants using transmission electron microscopy and mass spectrometry. In the absence of the prohead protease, SPN3US head formation was severely impeded and proheads accumulated on the Salmonella inner membrane. This impediment is indicative of proteolysis being necessary for the release and subsequent DNA packaging of proheads in the wild-type phage. Proteomic analyses of gp245- proheads that the normal proteolytic processing of head proteins had not occurred. Assays of a recombinant, truncated form of the protease found it was active, leading us to hypothesize that the C-terminal propeptide has a role in targeting the protease into the prohead core. Our findings provide new evidence regarding the essential role of proteolysis for correct head assembly in this remarkable parasite.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Fagos de Salmonella/metabolismo , Montagem de Vírus , Capsídeo/ultraestrutura , Genoma Viral/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Salmonella/virologia , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Análise de Sequência de DNA , Internalização do Vírus
3.
Micromachines (Basel) ; 10(7)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277396

RESUMO

Bacterial viruses or phages have great potential in the medical and agricultural fields as alternatives to antibiotics to control nuisance populations of pathogenic bacteria. However, current analysis and purification protocols for phages tend to be resource intensive and have numbers of limitations, such as impacting phage viability. The present study explores the potential of employing the electrokinetic technique of insulator-based dielectrophoresis (iDEP) for virus assessment, separation and enrichment. In particular, the application of the parameter "trapping value" (Tv) is explored as a standardized iDEP signature for each phage species. The present study includes mathematical modeling with COMSOL Multiphysics and extensive experimentation. Three related, but genetically and structurally distinct, phages were studied: Salmonella enterica phage SPN3US, Pseudomonas aeruginosa phage ϕKZ and P. chlororaphis phage 201ϕ2-1. This is the first iDEP study on bacteriophages with large and complex virions and the results illustrate their virions can be successfully enriched with iDEP systems and still retain infectivity. In addition, our results indicate that characterization of the negative dielectrophoretic response of a phage in terms of Tv could be used for predicting individual virus behavior in iDEP systems. The findings reported here can contribute to the establishment of protocols to analyze, purify and/or enrich samples of known and unknown phages.

4.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541839

RESUMO

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Assuntos
Vírus Gigantes/genética , Glicoproteínas/genética , Proteoma/análise , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Proteínas Virais/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Espectrometria de Massas , Pseudomonas aeruginosa/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA