Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Cell Dev Biol ; 12: 1347126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827524

RESUMO

Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.

2.
Diagnostics (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174977

RESUMO

Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.

3.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985625

RESUMO

Skin wound healing is a multiphase physiological process that involves the activation of numerous types of cells and is characterized by four phases, namely haemostasis, inflammatory, proliferative, and remodeling. However, on some occasions this healing becomes pathological, resulting in fibrosis. Epithelial mesenchymal transition (EMT) is an important process in which epithelial cells acquire mesenchymal fibroblast-like characteristics. Hydroxytyrosol (HT) is a phenolic compound extracted from olive oil and has been proven to have several health benefits. The aim of this study was to determine the effect of HT in type II EMT in human skin wound healing via cell viability, proliferation, migration, and proteins expression. Human dermal fibroblasts (HDF) isolated from skin samples were cultured in different concentrations of HT and EMT model, induced by adding 5 ng/mL of transforming growth factor-beta (TGF-ß) to the cells. HT concentrations were determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells' migrations were evaluated using scratch and transwell migration assay. Protein expressions were evaluated via immunocytochemistry. The result showed that HT at 0.2% and 0.4% significantly increased the proliferation rate of HDF (p < 0.05) compared to control. Scratch assay after 24 h showed increased cell migration in cells treated with 0.4% HT (p < 0.05) compared to the other groups. After 48 h, both concentrations of HT showed increased cell migration (p < 0.05) compared to the TGF-ß group. Transwell migration revealed that HT enhanced the migration capacity of cells significantly (p < 0.05) as compared to TGF-ß and the control group. In addition, HT supplemented cells upregulate the expression of epithelial marker E-cadherin while downregulating the expression of mesenchymal marker vimentin in comparison to TGF-ß group and control group. This study showed that HT has the ability to inhibit EMT, which has potential in the inhibition of fibrosis and persistent inflammation related to skin wound healing.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Humanos , Movimento Celular , Fator de Crescimento Transformador beta/farmacologia , Cicatrização , Fibrose , Fator de Crescimento Transformador beta1/metabolismo
4.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772084

RESUMO

Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, elastin, and cellulose nanocrystals (CNC) and crosslinked with genipin. The scaffolds were fabricated using the freeze-drying method. The composite scaffolds were composed of different concentrations of CNC, whereas scaffolds made of pure gelatin and a gelatin-elastin mixture served as controls. The physicochemical and mechanical properties of the scaffolds, and their cellular biocompatibility with human dermal fibroblasts (HDF), were evaluated. The composite scaffolds demonstrated higher porosity and swelling capacity and improved enzymatic resistance compared to the controls. Although the group with 0.5% (w/v) CNC recorded the highest pore size homogeneity, the diameters of most of the pores in the composite scaffolds ranged from 100 to 200 µm, which is sufficient for cell migration. Tensile strength analysis revealed that increasing the CNC concentration reduced the scaffolds' stiffness. Chemical analyses revealed that despite chemical and structural alterations, both elastin and CNC were integrated into the gelatin scaffold. HDF cultured on the scaffolds expressed collagen type I and α-SMA proteins, indicating the scaffolds' biocompatibility with HDF. Overall, the addition of elastin and CNC improved the properties of gelatin-based scaffolds. The composite scaffolds are promising candidates for an acellular skin substitute.

5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835154

RESUMO

Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos
6.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628163

RESUMO

Osteoarthritis (OA) is one of the leading joint diseases induced by abnormalities or inflammation in the synovial membrane and articular cartilage, causing severe pain and disability. Along with the cartilage malfunction, imbalanced oxygen uptake occurs, changing chondrocytes into type I collagen- and type X collagen-producing dedifferentiated cells, contributing to OA progression. However, mounting evidence suggests treating OA by inducing a hypoxic environment in the articular cartilage, targeting the inhibition of several OA-related pathways to bring chondrocytes into a normal state. This review discusses the implications of OA-diseased articular cartilage on chondrocyte phenotypes and turnover and debates the hypoxic mechanism of action. Furthermore, this review highlights the new understanding of OA, provided by tissue engineering and a regenerative medicine experimental design, modeling the disease into diverse 2D and 3D structures and investigating hypoxia and hypoxia-inducing biomolecules and potential cell therapies. This review also reports the mechanism of hypoxic regulation and highlights the importance of activating and stabilizing the hypoxia-inducible factor and related molecules to protect chondrocytes from mitochondrial dysfunction and apoptosis occurring under the influence of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Apoptose , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Hipóxia/metabolismo , Osteoartrite/metabolismo
7.
Regen Ther ; 19: 158-165, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252487

RESUMO

Intravenous (IV) infusion of mesenchymal stem cells (MSCs) from nascent tissues like Wharton's Jelly of the umbilical cord is reported to offer therapeutic effects against chronic diseases. However, toxicological data essential for the clinical application of these cells are limited. Thus, this study aimed to determine the safety of IV infusion of Wharton's Jelly derived MSCs (WJ-MSCs) in rats. Fifteen male Sprague-Dawley rats were randomised into the control or treatment group. Each group received an equal volume of saline or WJ-MSC (10 × 106 cell/kg) respectively. The animals were evaluated for physical, biochemical and haematological changes at Week 0, 2, 4, 8 and 12 during the 12-week study. Acute toxicity was performed during Week 2 and sub-chronic toxicity during Week 12. At the end of the study, the relative weight of organs was calculated and histology was performed for lung, liver, spleen and kidney. The findings from physical, serum biochemistry and complete blood count demonstrated no statistically significant differences between groups. However, pathological evaluation reported minor inflammation in the lungs for all groups, but visible healing and resolution of inflammation were observed in the treatment group only. Additionally, the histological images of the treatment group had significantly improved pulmonary structures compared to the control group. In summary, the IV administration of WJ-MSC was safe in the rats. Further studies are needed to determine the long-term safety of the WJ-MSC in both healthy and diseased animal models.

8.
Am J Transl Res ; 13(11): 12217-12227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956448

RESUMO

Recent explorations on mesenchymal stem/stromal cells (MSC) have reported a promising future for cell-based therapies. MSCs are widely sourced from various tissues and express unique properties of regenerative potential and immunomodulation. Currently, there is a growing interest in utilizing MSC for treatment of chronic diseases to overcome the drawbacks of chemical drugs. Metabolic Syndrome (MetS) is described as a cluster of metabolic abnormalities categorized as abdominal obesity, dyslipidaemia, hypertension, hypertriglyceridemia, and hyperglycaemia. Patients diagnosed with MetS have a high predisposition for developing cardiovascular complications, diabetes, non-alcoholic fatty liver diseases, bone loss, cancer, and mortality. Hence, research on MSC as therapy for MetS and related diseases, is greatly valued and are advantaged by the low immunogenicity with high regenerative capacity. However, there are many obstacles to be addressed such as the safety, efficacy, and consistency of different MSC sources. Additionally, factors such as effective dose level and delivery method are equally important to achieve uniform therapeutic outcomes. This systematic review discusses the potential roles of MSC in managing the multiple clusters of MetS. Research articles during the past 20 years were systematically searched and filtered to update the progress in the field of MSC therapy in managing various components of MetS. The different sources of MSC, dosage, method of delivery and outcome measures for the stem cell therapies were compiled from the systematically selected research articles. It can be concluded from the review of the selected articles that MSCs can improve the various disorders of MetS such as abdominal obesity, hyperglycaemia, hypertriglyceridemia and hypertension, and represent a promising alternative to conventional therapy of the MetS cluster.

9.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771136

RESUMO

The normal function of the airway epithelium is vital for the host's well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.


Assuntos
Mucosa Respiratória/metabolismo , Engenharia Tecidual/métodos , Traqueia/transplante , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Epitélio/metabolismo , Estudos de Viabilidade , Humanos , Antígeno Ki-67/análise , Antígeno Ki-67/genética , Mucina-5AC/análise , Mucina-5AC/genética , Mucosa/metabolismo , Cultura Primária de Células/métodos , Mucosa Respiratória/fisiologia , Traqueia/metabolismo , Traqueia/fisiologia
10.
Polymers (Basel) ; 13(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771347

RESUMO

Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials.

11.
Nutrients ; 13(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34444658

RESUMO

Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.


Assuntos
Açúcares da Dieta , Frutose , Síndrome Metabólica/etiologia , Adiposidade , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Metabolismo Energético , Hemodinâmica , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Camundongos , Ratos , Especificidade da Espécie
12.
Front Pharmacol ; 12: 633292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025406

RESUMO

Edible bird's nest (BN) is a Chinese traditional medicine with innumerable health benefits, including anti-viral, anti-inflammatory, neuroprotective, and immunomodulatory effects. A small number of studies have reported the anti-viral effects of EBN against influenza infections using in vitro and in vivo models, highlighting the importance of sialic acid and thymol derivatives in their therapeutic effects. At present, studies have reported that EBN suppresses the replicated virus from exiting the host cells, reduces the viral replication, endosomal trafficking of the virus, intracellular viral autophagy process, secretion of pro-inflammatory cytokines, reorient the actin cytoskeleton of the infected cells, and increase the lysosomal degradation of viral materials. In other models of disease, EBN attenuates oxidative stress-induced cellular apoptosis, enhances proliferation and activation of B-cells and their antibody secretion. Given the sum of its therapeutic actions, EBN appears to be a candidate that is worth further exploring for its protective effects against diseases transmitted through air droplets. At present, anti-viral drugs are employed as the first-line defense against respiratory viral infections, unless vaccines are available for the specific pathogens. In patients with severe symptoms due to exacerbated cytokine secretion, anti-inflammatory agents are applied. Treatment efficacy varies across the patients, and in times of a pandemic like COVID-19, many of the drugs are still at the experimental stage. In this review, we present a comprehensive overview of anti-viral and anti-inflammatory effects of EBN, chemical constituents from various EBN preparation techniques, and drugs currently used to treat influenza and novel coronavirus infections. We also aim to review the pathogenesis of influenza A and coronavirus, and the potential of EBN in their clinical application. We also describe the current literature in human consumption of EBN, known allergenic or contaminant presence, and the focus of future direction on how these can be addressed to further improve EBN for potential clinical application.

13.
Materials (Basel) ; 13(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007893

RESUMO

The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% (w/v) genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 µm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm-1, amide B: 2926 cm-1, amide I: 1631 cm-1, amide II: 1547 cm-1, and amide III: 1237 cm-1) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young's modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing.

14.
JBJS Case Connect ; 8(2): e38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29901479

RESUMO

CASE: A 22-year-old man sustained a laceration that measured 180 cm, after debridement, over the anterolateral aspect of the right leg following a road traffic accident. The wound was treated with MyDerm (Universiti Kebangsaan Malaysia), a cell-based, bilayered, bioengineered dermal substitute that contains no animal-derived components and is fully autologous. For its construction, only a small area of skin was harvested from the left groin, which was closed primarily with absorbable sutures. CONCLUSION: MyDerm is an alternative option for the treatment of a massive skin defect in patients who desire removal of only a negligible amount of skin from the donor site and when use of an autograft is insufficient.


Assuntos
Lacerações/cirurgia , Traumatismos da Perna/cirurgia , Procedimentos de Cirurgia Plástica/instrumentação , Pele Artificial , Transplante Autólogo/instrumentação , Adulto , Humanos , Perna (Membro)/patologia , Perna (Membro)/cirurgia , Masculino , Engenharia Tecidual , Adulto Jovem
15.
Int J Low Extrem Wounds ; 16(3): 212-216, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28862056

RESUMO

Open fracture Gustilo-Anderson grade IIIC is associated with higher risk of infection and problems with soft tissue coverage. Various methods have been used for soft tissue coverage in open fractures with large skin defect. We report a case of a patient who had grade IIIC open fracture of the tibia with posterior tibial artery injury. The patient underwent external fixation and reduction. Because of potential compartment syndrome after vascular repair, fasciotomy of the posterior compartment was performed. This wound, however, became infected and because of further debridement, gave rise to a large skin defect. A tissue engineered skin construct, MyDermTM was employed to cover this large defect. Complete wound closure was achieved 35 days postimplantation. The patient then underwent plating of the tibia for nonunion with no adverse effect to the grafted site. The tibia eventually healed 5 months postplating, and the cosmetic appearance of the newly formed skin was satisfactory.


Assuntos
Fraturas Expostas/cirurgia , Transplante de Pele/métodos , Pele Artificial/estatística & dados numéricos , Lesões dos Tecidos Moles/cirurgia , Fraturas da Tíbia/cirurgia , Adulto , Pinos Ortopédicos , Placas Ósseas , Terapia Combinada , Desbridamento/métodos , Seguimentos , Fixação Interna de Fraturas/métodos , Fraturas Expostas/diagnóstico por imagem , Humanos , Escala de Gravidade do Ferimento , Masculino , Radiografia/métodos , Medição de Risco , Lesões dos Tecidos Moles/diagnóstico , Fraturas da Tíbia/diagnóstico por imagem , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA