Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672997

RESUMO

Coronary artery disease (CAD) is often associated with the older generation. However, in recent years, there is an increasing trend in the prevalence of CAD among the younger population; this is known as premature CAD. Although biomarkers for CAD have been established, there are limited studies focusing on premature CAD especially among the Malay male population. Thus, the aim of this research was to compare the biomarkers between premature CAD (PCAD) and older CAD (OCAD) among Malay males. Subjects, recruited from the Universiti Kebangsaan Malaysia Medical Centre and National Heart Institution, were divided into four groups: healthy control < 45 years old; premature CAD (PCAD) < 45 years old; healthy control > 60 years old; and older CAD (OCAD) > 60 years old, with n = 30 for each group. Ten potential markers for CAD including soluble sVCAM-1, sICAM-1, interleukin-2, interleukin-6, interleukin-10, Apo-E and Apo-A1, homocysteine, CRP, and vitamin D levels were examined. Our results revealed premature CAD patients had significantly higher values (p < 0.05) of sVCAM-1, CRP, interleukin-6, and vitamin D when compared to the age-matched controls. Similarly, older CAD patients showed higher levels of sVCAM-1, CRP, and interleukin-2 when compared to their age-matched controls. After adjusting for multiple parameters, only CRP remained significant for PCAD and interleukin-2 remained significant for CAD. This indicates that premature CAD and older CAD patients showed different profiles of protein biomarkers. CRP has the potential to become a biomarker for premature CAD while interleukin-2 is a better biomarker for older CAD together with other typical panels of protein biomarkers.

2.
Cells ; 10(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199148

RESUMO

The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.


Assuntos
Envelhecimento/genética , Cognição/fisiologia , Transcriptoma/genética , Adulto , Idoso , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Malásia , Pessoa de Meia-Idade , Análise de Componente Principal , Reprodutibilidade dos Testes
3.
Nutrients ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297295

RESUMO

Muscle atrophy in ageing is a multifactorial degenerative process impacted by cellular ageing biology, which includes oxidative stress. Chlorella vulgaris is a coccoid green eukaryotic microalga rich in antioxidants. The aim of this study was to determine the effect of C. vulgaris in ameliorating oxidative stress, thus elucidating its mechanism in improving muscle mass, strength and function in young and old rats. Fifty-six male Sprague-Dawley (SD) rats aged 3 months (young) and 21 months (old) were divided into three groups: Group 1 (control) was given distilled water; Group 2 was treated with 150 mg/kg body weight (BW) of C. vulgaris; and Group 3 was treated with 300 mg/kg BW of C. vulgaris for three months. Grip and muscle strength and muscle integrity were determined on days 0, 30, 60, and 90 of treatment. Urine and blood were collected on days 0 and 90 of treatment for oxidative stress marker determination, while the gastrocnemius muscles were collected for muscle oxidative stress analysis. Increased grip strength of the front and hind paws was observed in young C. vulgaris-treated rats on days 30, 60, and 90 compared to the untreated control on the same days (p < 0.05). There was a significant increase in lean bone mineral content (BMC) in young rats treated with 300 mg/kg BW C. vulgaris compared to untreated rats on days 30 and 60. The fat mass was significantly decreased in young and old C. vulgaris-treated rats on day 90 compared to the untreated control. The total path was significantly increased for old rats treated with 300 mg/kg BW C. vulgaris on days 60 and 90 compared to day 0. Young and old C. vulgaris-treated rats demonstrated a significant decrease in urinary isoprostane F2t and plasma creatine kinase-MM (CKMM) compared to the control on day 90. A significant decrease in malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) levels were observed in young and old rats treated with C. vulgaris. C. vulgaris improved the muscle mass, strength, and function in young and old rats. This effect could be due to its potency in ameliorating oxidative stress in the skeletal muscle of young and old rats.


Assuntos
Antioxidantes/farmacologia , Chlorella vulgaris , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Força da Mão/fisiologia , Masculino , Malondialdeído/metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 10(1): 8962, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488024

RESUMO

Vitamin E acts as an antioxidant and reduces the level of reactive oxygen species (ROS) in Alzheimer's disease (AD). Alpha-tocopherol (ATF) is the most widely studied form of vitamin E besides gamma-tocopherol (GTF) which also shows beneficial effects in AD. The levels of amyloid-beta (Aß) and amyloid precursor protein (APP) increased in the brains of AD patients, and mutations in the APP gene are known to enhance the production of Aß. Mitochondrial function was shown to be affected by the increased level of Aß and may induce cell death. Here, we aimed to compare the effects of ATF and GTF on their ability to reduce Aß level, modulate mitochondrial function and reduce the apoptosis marker in SH-SY5Y cells stably transfected with the wild-type or mutant form of the APP gene. The Aß level was measured by ELISA, the mitochondrial ROS and ATP level were quantified by fluorescence and luciferase assay respectively whereas the complex V enzyme activity was measured by spectrophotometry. The expressions of genes involved in the regulation of mitochondrial membrane permeability such as voltage dependent anion channel (VDAC1), adenine nucleotide translocase (ANT), and cyclophilin D (CYPD) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), while the expressions of cyclophilin D (CypD), cytochrome c, Bcl2 associated X (BAX), B cell lymphoma-2 (Bcl-2), and pro-caspase-3 were determined by western blot. Our results showed that mitochondrial ROS level was elevated accompanied by decreased ATP level and complex V enzyme activity in SH-SY5Y cells expressing the mutant APP gene (p < 0.05). Treatment with both ATF and GTF reduced the mitochondrial ROS level with maximum reduction was observed in the cells treated with high concentrations of ATF and GTF (p < 0.05). However, only GTF at 80 µM significantly increase the ATP level and complex V enzyme activity (p < 0.05). VDAC1 and CYPD were downregulated and CypD protein was significantly overexpressed in cells transfected with the wild-type (WT) and mutant APP gene (p < 0.05). Cytochrome c release, the ratio of BAX/Bcl-2, and pro-caspase-3 expression increased in cells expressing mutated APP gene (p < 0.05). The expression of CypD and pro-caspase 3 protein, and the ratio of BAX/Bcl-2 were increased in the following order; SH-SY5Y-APP-WT < SH-SY5Y-APP Swe

Assuntos
Mitocôndrias/efeitos dos fármacos , alfa-Tocoferol/farmacologia , gama-Tocoferol/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tocoferóis/farmacologia
5.
Cytotechnology ; 71(6): 1121-1135, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31606844

RESUMO

This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31428175

RESUMO

BACKGROUND: Loss of skeletal muscle mass, strength, and function due to gradual decline in the regeneration of skeletal muscle fibers was observed with advancing age. This condition is known as sarcopenia. Myogenic regulatory factors (MRFs) are essential in muscle regeneration as its activation leads to the differentiation of myoblasts to myofibers. Chlorella vulgaris is a coccoid green eukaryotic microalga that contains highly nutritious substances and has been reported for its pharmaceutical effects. The aim of this study was to determine the effect of C. vulgaris on the regulation of MRFs and myomiRs expression in young and senescent myoblasts during differentiation in vitro. METHODS: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation. RESULTS: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment. CONCLUSIONS: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.

7.
Oxid Med Cell Longev ; 2019: 3520789, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281573

RESUMO

Sarcopenia is characterized by the loss of muscle mass, strength, and function with ageing. With increasing life expectancy, greater attention has been given to counteracting the effects of sarcopenia on the growing elderly population. Chlorella vulgaris, a microscopic, unicellular, green alga with the potential for various pharmaceutical uses, has been widely studied in this context. This study is aimed at determining the effects of C. vulgaris on promoting muscle regeneration by evaluating myoblast regenerative capacity in vitro. Human skeletal myoblast cells were cultured and underwent serial passaging into young and senescent phases and were then treated with C. vulgaris, followed by the induction of differentiation. The ability of C. vulgaris to promote myoblast differentiation was analysed through cellular morphology, real-time monitoring, cell proliferation, senescence-associated ß-galactosidase (SA-ß-gal) expression, myogenic differentiation, myogenin expression, and cell cycle profiling. The results obtained showed that senescent myoblasts exhibited an enlarged and flattened morphology, with increased SA-ß-gal expression, reduced myogenic differentiation, decreased expression of myogenin, and an increased percentage of cells in the G 0/G 1 phase. Treatment with C. vulgaris resulted in decreased SA-ß-gal expression and promotion of myogenic differentiation, as observed via an increased fusion index, maturation index, myotube size, and surface area and an increased percentage of cells that stained positive for myogenin. In conclusion, C. vulgaris improves the regenerative capacity of young and senescent myoblasts and promotes myoblast differentiation, indicating its potential to promote muscle regeneration.


Assuntos
Chlorella vulgaris/química , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo , Adolescente , Adulto , Diferenciação Celular , Feminino , Humanos , Adulto Jovem
8.
Free Radic Res ; 52(9): 1000-1009, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30079776

RESUMO

Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.


Assuntos
Envelhecimento/sangue , Disfunção Cognitiva/sangue , Malondialdeído/sangue , Estresse Oxidativo/genética , Adulto , Idoso , Envelhecimento/genética , Envelhecimento/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Dano ao DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
BMC Cancer ; 17(1): 879, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268718

RESUMO

BACKGROUND: Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers. METHODS: Male Wistar rats (200-250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-ß (TGF-ß), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6). RESULTS: Serum level of TGF-ß increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-ß, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05). CONCLUSIONS: Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-ß, in HCC-induced rats.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/prevenção & controle , Chlorella vulgaris/química , Dieta/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Antígenos de Diferenciação/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Deficiência de Colina/complicações , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo , alfa-Fetoproteínas/metabolismo
10.
Biomed Res Int ; 2017: 6894026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596968

RESUMO

Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.


Assuntos
Senescência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Piper betle/química , Extratos Vegetais/farmacologia , Criança , Diploide , Fibroblastos/citologia , Humanos , Masculino , Extratos Vegetais/química
11.
Appl Biochem Biotechnol ; 183(3): 853-866, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28417423

RESUMO

Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aß). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aß42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aß42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aß42 alone and that more extensive Aß formation, such as accumulation of intraneuronal Aß, Aß plaques, soluble oligomeric Aß (oAß), and insoluble fibrillar Aß (fAß) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aß42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aß2/40 ratio compared to wild-type and single-mutant cells.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Mutação , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Plasmídeos/genética , Transfecção
12.
Oxid Med Cell Longev ; 2017: 3868305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243354

RESUMO

During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.


Assuntos
Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tocotrienóis/farmacologia , Células Cultivadas , Radicais Livres/metabolismo , Glutationa/metabolismo , Humanos , Mioblastos/metabolismo , Mioblastos/patologia
13.
Int J Neurosci ; 127(3): 218-235, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27074540

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of disability associated with neurodegeneration worldwide. These diseases are influenced by multiple genetic and environmental factors and share similar mechanisms as both are characterized by accumulation and aggregation of misfolded proteins - amyloid-beta (Aß) in AD and α-synuclein in PD. Over the past decade, increasing evidence has shown that mitochondrial dysfunction and the generation of reactive oxygen species (ROS) are involved in the pathology of these diseases, and the contributions of these defects to the cellular and molecular changes that eventually cause neuronal death have been explored. Using mitochondrial protective agents, such as antioxidants, to combat ROS provides a new strategy for neurodegenerative treatment. In this review, we highlight the potential of multiple types of antioxidants, including vitamins, phytochemicals, fatty acids and minerals, as well as synthetic antioxidants specifically targeting the mitochondria, which can restore mitochondrial function, in the treatment of neurodegenerative disorders at both the pre-clinical and clinical stages by focusing on AD and PD.


Assuntos
Antioxidantes/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/etiologia , Doenças Neurodegenerativas/complicações , Animais , Antioxidantes/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
J Nutrigenet Nutrigenomics ; 9(5-6): 243-253, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28002828

RESUMO

BACKGROUND/AIMS: The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. METHODS: Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. RESULTS: PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. CONCLUSIONS: PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process.


Assuntos
Envelhecimento , Elementos de Resposta Antioxidante/efeitos dos fármacos , Citoproteção , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piper betle/química , Extratos Vegetais/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Elementos de Resposta Antioxidante/genética , Elementos de Resposta Antioxidante/fisiologia , Antioxidantes/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Masculino , Desintoxicação Metabólica Fase II/genética , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Extratos Vegetais/química , Proteínas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
Adv Exp Med Biol ; 929: 177-207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771925

RESUMO

Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Catecóis/uso terapêutico , Doença Crônica/tratamento farmacológico , Descoberta de Drogas/métodos , Álcoois Graxos/uso terapêutico , Zingiber officinale/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Catecóis/química , Catecóis/isolamento & purificação , Modelos Animais de Doenças , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Humanos , Estrutura Molecular , Fitoterapia , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
BMC Complement Altern Med ; 16: 259, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473120

RESUMO

BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively. RESULTS: Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses. CONCLUSION: These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.


Assuntos
Acacia , Produtos Biológicos/farmacologia , Córnea/efeitos dos fármacos , Úlcera da Córnea/metabolismo , Mel , Cicatrização/efeitos dos fármacos , Animais , Produtos Biológicos/química , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Córnea/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Imuno-Histoquímica , Modelos Biológicos , Coelhos
17.
PLoS One ; 11(2): e0149265, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26885980

RESUMO

Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated ß-galactosidase (SA-ß-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-ß-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/citologia , Tocoferóis/farmacologia , Tocotrienóis/farmacologia , Adolescente , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular , Senescência Celular/genética , Desmina/metabolismo , Feminino , Radicais Livres/metabolismo , Humanos , Masculino , Mioblastos/efeitos dos fármacos , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitamina E/farmacologia , beta-Galactosidase/metabolismo
18.
Asian Pac J Cancer Prev ; 16(15): 6549-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26434873

RESUMO

The PI3K-Akt-mTOR, Wnt/ß-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/ß-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, ß-catenin, Gsk3ß, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/ß catenin signaling pathways and induction of apoptosis pathway.


Assuntos
Anticarcinógenos/farmacologia , Mel , Extratos Vegetais/farmacologia , Serina-Treonina Quinases TOR/genética , Via de Sinalização Wnt/efeitos dos fármacos , Zingiber officinale , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética , Caspase 3/genética , Sobrevivência Celular/efeitos dos fármacos , Quimioprevenção , Ciclina D1/genética , Citocromos c/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células HT29 , Humanos , Concentração Inibidora 50 , Melaleuca , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição 4 , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , beta Catenina/genética
19.
BMC Cell Biol ; 16: 2, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25887200

RESUMO

BACKGROUND: Acacia honey (AH) has been proven to improve skin wound healing, but its therapeutic effects on corneal epithelium has not been elucidated to date. This study aimed to investigate the effects of AH on cultured corneal epithelial cells (CEC) on in vitro corneal abrasion wound healing model. Six New Zealand white rabbits' CEC were isolated and cultured until passage 1. Circular wound area was created onto a confluent monolayer CEC using a corneal trephine which mimicked corneal abrasion and treated with 0.025% AH supplemented in basal medium (BM) and complete cornea medium (CCM). Wound healing was measured as the percentage of wound closure by the migration of CEC on day 0, day 3 and day 6, post wound creation. The morphological changes of CEC were assessed via phase contrast microscopy. Gene and protein expressions of cytokeratin (CK3), fibronectin and cluster of differentiation 44 (CD44) in AH treated groups and control groups were determined by real-time PCR and immunocytochemistry, respectively. RESULTS: Cultured CEC exhibited similar morphology of polygonal shaped cells in all culture media. CEC cultured in AH-supplemented media showed higher percentage of wound closure compared to the controls. Gene expression of CK3 increased in AH-supplemented groups throughout the study. Fibronectin expression was increased at the initial stage while CD44 expression was increased at day 3, post wound creation. The protein expression of CEC cultured in all media was in accordance to their respective gene expressions. CONCLUSION: Supplementation of AH in BM and CCM media accelerates CEC wound closure of the in vitro corneal abrasion model by increasing the expression of genes and proteins associated with CEC wound healing.


Assuntos
Células Epiteliais/citologia , Mel , Cicatrização , Acacia/metabolismo , Animais , Movimento Celular , Células Cultivadas , Córnea/citologia , Córnea/patologia , Lesões da Córnea/patologia , Lesões da Córnea/terapia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Queratina-3/genética , Queratina-3/metabolismo , Coelhos , Reação em Cadeia da Polimerase em Tempo Real
20.
J Zhejiang Univ Sci B ; 15(8): 692-700, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25091987

RESUMO

OBJECTIVE: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. METHODS: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. RESULTS: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. CONCLUSIONS: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fluoruracila/administração & dosagem , Interações Ervas-Drogas , Fitoterapia , Piper betle , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Malásia , Extratos Vegetais/administração & dosagem , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA