Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
2.
Acta Neuropathol ; 145(5): 637-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879070

RESUMO

A missense variant from methionine to arginine at codon 232 (M232R) of the prion protein gene accounts for ~ 15% of Japanese patients with genetic prion diseases. However, pathogenic roles of the M232R substitution for the induction of prion disease have remained elusive because family history is usually absent in patients with M232R. In addition, the clinicopathologic phenotypes of patients with M232R are indistinguishable from those of sporadic Creutzfeldt-Jakob disease patients. Furthermore, the M232R substitution is located in the glycosylphosphatidylinositol (GPI)-attachment signal peptide that is cleaved off during the maturation of prion proteins. Therefore, there has been an argument that the M232R substitution might be an uncommon polymorphism rather than a pathogenic mutation. To unveil the role of the M232R substitution in the GPI-attachment signal peptide of prion protein in the pathogenesis of prion disease, here we generated a mouse model expressing human prion proteins with M232R and investigated the susceptibility to prion disease. The M232R substitution accelerates the development of prion disease in a prion strain-dependent manner, without affecting prion strain-specific histopathologic and biochemical features. The M232R substitution did not alter the attachment of GPI nor GPI-attachment site. Instead, the substitution altered endoplasmic reticulum translocation pathway of prion proteins by reducing the hydrophobicity of the GPI-attachment signal peptide, resulting in the reduction of N-linked glycosylation and GPI glycosylation of prion proteins. To the best of our knowledge, this is the first time to show a direct relationship between a point mutation in the GPI-attachment signal peptide and the development of disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Animais , Camundongos , Humanos , Proteínas Priônicas/genética , Mutação Puntual , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Sinais Direcionadores de Proteínas/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Príons/genética , Príons/metabolismo , Mutação/genética
3.
Lab Invest ; 101(10): 1327-1330, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253850

RESUMO

Five sporadic Creutzfeldt-Jakob disease (CJD) strains have been identified to date, based on differences in clinicopathological features of the patients, the biochemical properties of abnormal prion proteins, and transmission properties. Recent advances in our knowledge about iatrogenic transmission of sporadic CJD have raised the possibility that the infectivity of sporadic CJD strains through peripheral routes is different from that of intracranial infection. To test this possibility, here we assessed systematically the infectivity of sporadic CJD strains through the peripheral route for the first time using a mouse model expressing human prion protein. Although the infectivity of the V2 and M1 sporadic CJD strains is almost the same in intracerebral transmission studies, the V2 strain infected more efficiently than the M1 strain through the peripheral route. The other sporadic CJD strains examined lacked infectivity. Of note, both the V2 and M1 strains showed preference for mice with the valine homozygosity at the PRNP polymorphic codon. These results indicate that the V2 strain is the most infectious sporadic CJD strain for infection through peripheral routes. In addition, these findings raise the possibility that individuals with the valine homozygosity at the PRNP polymorphic codon might have higher risks of infection through peripheral routes compared with the methionine homozygotes. Thus, preventive measures against the transmission of the V2 sporadic CJD strain will be important for the eradication of iatrogenic CJD transmission through peripheral routes.


Assuntos
Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/transmissão , Animais , Química Encefálica , Síndrome de Creutzfeldt-Jakob/classificação , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo
4.
J Gen Virol ; 101(1): 136-142, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31718739

RESUMO

Bovine spongiform encephalopathy (BSE) prion is more resistant to heat inactivation compared to other prions, but the effect of heat inactivation has been reported to differ depending on the BSE-contaminated tissue state or heating type. We aimed to evaluate the secure level of inactivation of original BSE transmissibility by dry-heating. Cattle tissues affected with BSE were subjected to dry-heat treatment for 20 min at various temperatures ranging from 150 to 1000 °C. To assess the inactivation effect, we conducted protein misfolding cyclic amplification (PMCA) and follicular dendritic cell (FDC) assays in transgenic mice expressing bovine prion protein genes. Under dry-heating at 600 °C or higher, BSE cattle tissues lost their transmissibility in transgenic mice. In contrast, transmissibility was detected in the cattle tissues treated at temperatures of 400 °C or lower through the FDC assay combined with PMCA. In this study, we confirmed that transmissibility was eliminated in BSE-affected cattle tissues by dry-heating at 600 °C or higher.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Temperatura Alta , Camundongos , Camundongos Transgênicos , Príons/metabolismo
5.
Am J Pathol ; 189(6): 1276-1283, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926338

RESUMO

Six subgroups of sporadic Creutzfeldt-Jakob disease have been identified by distinctive clinicopathologic features, genotype at polymorphic codon 129 [methionine (M)/valine (V)] of the PRNP gene, and type of abnormal prion proteins (type 1 or 2). In addition to the pure subgroups, mixed neuropathologic features and the coexistence of two types of abnormal prion proteins in the same patient also have been reported. Here, we found that a portion of the patients previously diagnosed as MM1 had neuropathologic characteristics of the MM2 thalamic form (ie, neuronal loss of the inferior olivary nucleus of the medulla). Furthermore, coexistence of biochemical features of the MM2 thalamic form also was confirmed in the identified cases. In addition, in transmission experiments using prion protein-humanized mice, the brain material from the identified case showed weak infectivity and generated characteristic abnormal prion proteins in the inoculated mice resembling those after inoculation with brain material of MM2 thalamic form. Taken together, these results show that the co-occurrence of MM1 and MM2 thalamic form is a novel entity of sporadic Creutzfeldt-Jakob disease prion strain co-occurrence. The present study raises the possibility that the co-occurrence of the MM2 thalamic form might have been overlooked so far because of the scarcity of abnormal prion protein accumulation and restricted neuropathology.


Assuntos
Síndrome de Creutzfeldt-Jakob/metabolismo , Mutação de Sentido Incorreto , Proteínas Priônicas/metabolismo , Tálamo/metabolismo , Idoso , Substituição de Aminoácidos , Animais , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Priônicas/genética , Tálamo/patologia
6.
Brain Commun ; 1(1): fcz045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32954274

RESUMO

Fatal familial insomnia is a genetic prion disease, which is associated with the aspartic acid to asparagine substitution at codon 178 of the prion protein gene. Although the hallmark pathological feature is thalamic and olivary degeneration, there is a patient with an atypical fatal familial insomnia without the hallmark feature. The cause of the pathological variability is unclear. We analysed a Japanese fatal familial insomnia kindred and compared one atypical clinicopathological fatal familial insomnia phenotype case and typical fatal familial insomnia phenotype cases with transmission studies using multiple lines of knock-in mice and with protein misfolding cyclic amplification. We also analysed the transmissibility and the amplification properties of sporadic fatal insomnia. Transmission studies revealed that the typical fatal familial insomnia with thalamic and olivary degeneration showed successful transmission only using knock-in mice expressing human-mouse chimeric prion protein gene. The atypical fatal familial insomnia with spongiform changes showed successful transmission only using knock-in mice expressing bank vole prion protein gene. Two sporadic fatal insomnia cases with thalamic and olivary degeneration showed the same transmissibility as the typical fatal familial insomnia phenotype. Interestingly, one sporadic fatal insomnia case with thalamic/olivary degeneration and spongiform changes showed transmissibility of both the typical and atypical fatal familial insomnia phenotypes. Protein misfolding cyclic amplification could amplify both typical fatal familial insomnia cases and sporadic fatal insomnia cases but not the atypical fatal familial insomnia phenotype or other sporadic Creutzfeldt-Jakob disease subtypes. In addition to clinical findings and neuropathological features, the transmission properties and the amplification properties were different between the typical and atypical fatal familial insomnia phenotypes. It is suggested that two distinct prions were associated with the diversity in the fatal familial insomnia phenotype, and these two prions could also be detected in sporadic fatal insomnia.

7.
Brain Pathol ; 29(2): 155-163, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30051525

RESUMO

Bank vole is a small rodent that shows high susceptibility to infection with diverse prion strains. To determine whether the increased susceptibility of bank voles to prion diseases can be attributed to the intrinsic nature of bank vole prion protein (PrP) or to host factors other than PrP, we produced transgenic mice overexpressing bank vole PrP. These transgenic mice spontaneously developed neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. Then, we produced transgenic mice overexpressing chimeric mouse/bank vole PrP, which differs from mouse PrP only at two residues located at the C-terminus, to determine the minimum essential domain for the induction of spontaneous generation of abnormal PrP. These transgenic mice also developed spontaneous neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. In addition, knock-in mice expressing bank vole PrP at the same level as that of wild-type mice did not develop spontaneous disease but showed high susceptibility to infection with diverse prion strains, similarly to bank voles. Taken together, these findings show that bank vole PrP has a high propensity for the conformational conversion both in spontaneous disease and in prion infection, probably due to the characteristic structural properties of the C-terminal domain.


Assuntos
Arvicolinae/genética , Doenças Priônicas/genética , Príons/genética , Sequência de Aminoácidos/genética , Animais , Arvicolinae/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/metabolismo
8.
Am J Pathol ; 189(3): 677-686, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553837

RESUMO

Localization of the abnormal and normal isoforms of prion proteins to detergent-resistant membrane microdomains, lipid rafts, is important for the conformational conversion. Lipid rafts are enriched in sialic acid-containing glycosphingolipids (namely, gangliosides). Alteration in the ganglioside composition of lipid rafts can affect the localization of lipid raft-associated proteins. To investigate the role of gangliosides in the pathogenesis of prion diseases, we performed intracerebral transmission study of a scrapie prion strain Chandler and a Gerstmann-Sträussler-Scheinker syndrome prion strain Fukuoka-1 using various knockout mouse strains ablated with ganglioside synthase gene (ie, GD2/GM2 synthase, GD3 synthase, or GM3 synthase). After challenge with the Chandler strain, GD2/GM2 synthase knockout mice showed 20% reduction of incubation time, reduced prion protein deposition in the brain with attenuated glial reactions, and reduced localization of prion proteins to lipid rafts. These results raise the possibility that the gangliosides may have an important role in prion disease pathogenesis by affecting the localization of prion proteins to lipid rafts.


Assuntos
N-Acetilgalactosaminiltransferases/deficiência , Neuroglia/enzimologia , Proteínas PrPSc/metabolismo , Doenças Priônicas/enzimologia , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Neuroglia/patologia , Proteínas PrPSc/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Fatores de Tempo
9.
Neurosci Lett ; 668: 43-47, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29329906

RESUMO

Evaluation of transmission properties is important for the differential diagnosis of a subgroup of acquired Creutzfeldt-Jakob disease (CJD) with methionine homozygosity at polymorphic codon 129 of the PRNP gene, an intermediate type abnormal prion protein (PrP), and kuru plaques, denoted as acquired CJD-MMiK. The present study aimed to develop a quick evaluation system of the transmission properties of acquired CJD-MMiK. In the PrP-humanized mice intraperitoneally inoculated with brain homogenates from an acquired CJD-MMiK patient, accumulation of abnormal PrP was observed in follicular dendritic cells of the spleen at 75 days post-inoculation. The transmission properties of acquired CJD-MMiK were quite different from those of sporadic CJD with the same PRNP codon 129 genotype. Moreover, even at 14 days post-inoculation, the characteristic transmission properties of acquired CJD-MMiK could be detected. These findings suggest that the bioassay using follicular dendritic cells of the spleen, named as a FDC assay, can be an easy, time-saving, and useful method to distinguish acquired CJD-MMiK from sporadic CJD.


Assuntos
Bioensaio , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/transmissão , Células Dendríticas Foliculares , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
10.
Emerg Infect Dis ; 23(9): 1522-1530, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820136

RESUMO

Bovine spongiform encephalopathy (BSE) is the only known zoonotic prion that causes variant Creutzfeldt-Jakob disease (vCJD) in humans. The major risk determinant for this disease is the polymorphic codon 129 of the human prion protein (Hu-PrP), where either methionine (Met129) or valine (Val129) can be encoded. To date, all clinical and neuropathologically confirmed vCJD cases have been Met129 homozygous, with the exception of 1 recently reported Met/Val heterozygous case. Here, we found that transgenic mice homozygous for Val129 Hu-PrP show severely restricted propagation of the BSE prion strain, but this constraint can be partially overcome by adaptation of the BSE agent to the Met129 Hu-PrP. In addition, the transmission of vCJD to transgenic mice homozygous for Val129 Hu-PrP resulted in a prion with distinct strain features. These observations may indicate increased risk for vCJD secondary transmission in Val129 Hu-PrP-positive humans with the emergence of new strain features.


Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Resistência à Doença/genética , Encefalopatia Espongiforme Bovina/imunologia , Proteínas Priônicas/imunologia , Valina/imunologia , Substituição de Aminoácidos , Animais , Encéfalo/patologia , Bovinos , Códon , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/patologia , Encefalopatia Espongiforme Bovina/transmissão , Expressão Gênica , Humanos , Injeções Intraventriculares , Metionina/genética , Metionina/imunologia , Camundongos , Camundongos Transgênicos , Peptídeo Hidrolases/química , Proteínas Priônicas/química , Proteínas Priônicas/genética , Valina/genética
11.
Prep Biochem Biotechnol ; 47(1): 1-7, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26918377

RESUMO

We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrPSc) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrPC source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.


Assuntos
Baculoviridae/genética , Cromatografia de Afinidade/métodos , Sequência de Aminoácidos , Animais , Western Blotting , Epitopos/metabolismo , Camundongos , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteínas Priônicas/isolamento & purificação , Proteínas Priônicas/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Spodoptera , Virulência
12.
Neuropathology ; 36(3): 305-10, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26669818

RESUMO

As an experimental model of acquired Creutzfeldt-Jakob disease (CJD), we performed transmission studies of sporadic CJD using knock-in mice expressing human prion protein (PrP). In this model, the inoculation of the sporadic CJD strain V2 into animals homozygous for methionine at polymorphic codon 129 (129 M/M) of the PRNP gene produced quite distinctive neuropathological and biochemical features, that is, widespread kuru plaques and intermediate type abnormal PrP (PrP(Sc) ). Interestingly, this distinctive combination of molecular and pathological features has been, to date, observed in acquired CJD but not in sporadic CJD. Assuming that these distinctive phenotypic traits are specific for acquired CJD, we revisited the literature and found two cases showing widespread kuru plaques despite the 129 M/M genotype, in a neurosurgeon and in a patient with a medical history of neurosurgery without dura mater grafting. By Western blot analysis of brain homogenates, we revealed the intermediate type of PrP(Sc) in both cases. Furthermore, transmission properties of brain extracts from these two cases were indistinguishable from those of a subgroup of dura mater graft-associated iatrogenic CJD caused by infection with the sporadic CJD strain V2. These data strongly suggest that the two atypical CJD cases, previously thought to represent sporadic CJD, very likely acquired the disease through exposure to prion-contaminated brain tissues. Thus, we propose that the distinctive combination of 129 M/M genotype, kuru plaques, and intermediate type PrP(Sc) , represents a reliable criterion for the identification of acquired CJD cases among presumed sporadic cases.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Proteínas Priônicas/genética , Animais , Códon , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Técnicas de Introdução de Genes , Genótipo , Humanos , Metionina/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Proteínas PrPC/genética , Proteínas PrPSc/genética
13.
Brain Pathol ; 26(1): 95-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25851836

RESUMO

The genotype (methionine, M or valine, V) at polymorphic codon 129 of the PRNP gene and the type (1 or 2) of abnormal prion protein in the brain are the major determinants of the clinicopathological features of sporadic Creutzfeldt-Jakob disease (CJD), thus providing molecular basis for classification of sporadic CJD, that is, MM1, MM2, MV1, MV2, VV1 or VV2. In addition to these "pure" cases, "mixed" cases presenting mixed neuropathological and biochemical features have also been recognized. The most frequently observed mixed form is the co-occurrence of MM1 and MM2, namely MM1+2. However, it has remained elusive whether MM1+2 could be a causative origin of dura mater graft-associated CJD (dCJD), one of the largest subgroups of iatrogenic CJD. To test this possibility, we performed transmission experiments of MM1+2 prions and a systematic neuropathological examination of dCJD patients in the present study. The transmission properties of the MM1+2 prions were identical to those of MM1 prions because MM2 prions lacked transmissibility. In addition, the neuropathological characteristics of MM2 were totally absent in dCJD patients examined. These results suggest that MM1+2 can be a causative origin of dCJD and causes neuropathological phenotype similar to that of MM1.


Assuntos
Síndrome de Creutzfeldt-Jakob/classificação , Síndrome de Creutzfeldt-Jakob/transmissão , Proteínas Mutantes/metabolismo , Príons/genética , Príons/metabolismo , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Metionina/genética , Camundongos , Proteínas Mutantes/genética , Proteínas Priônicas
14.
PLoS One ; 10(12): e0144761, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26675475

RESUMO

The global outbreak of bovine spongiform encephalopathy (BSE) has been attributed to the recycling of contaminated meat and bone meals (MBMs) as feed supplements. The use of MBMs has been prohibited in many countries; however, the development of a method for inactivating BSE prions could enable the efficient and safe use of these products as an organic resource. Subcritical water (SCW), which is water heated under pressure to maintain a liquid state at temperatures below the critical temperature (374°C), exhibits strong hydrolytic activity against organic compounds. In this study, we examined the residual in vitro seeding activity of protease-resistant prion protein (PrPSc) and the infectivity of BSE prions after SCW treatments. Spinal cord homogenates prepared from BSE-infected cows were treated with SCW at 230-280°C for 5-7.5 min and used to intracerebrally inoculate transgenic mice overexpressing bovine prion protein. Serial protein misfolding cyclic amplification (sPMCA) analysis detected no PrPSc in the SCW-treated homogenates, and the mice treated with these samples survived for more than 700 days without any signs of disease. However, sPMCA analyses detected PrPSc accumulation in the brains of all inoculated mice. Furthermore, secondary passage mice, which inoculated with brain homogenates derived from a western blotting (WB)-positive primary passage mouse, died after an average of 240 days, similar to mice inoculated with untreated BSE-infected spinal cord homogenates. The PrPSc accumulation and vacuolation typically observed in the brains of BSE-infected mice were confirmed in these secondary passage mice, suggesting that the BSE prions maintained their infectivity after SCW treatment. One late-onset case, as well as asymptomatic but sPMCA-positive cases, were also recognized in secondary passage mice inoculated with brain homogenates from WB-negative but sPMCA-positive primary passage mice. These results indicated that SCW-mediated hydrolysis was insufficient to eliminate the infectivity of BSE prions under the conditions tested.


Assuntos
Desinfecção/métodos , Encefalopatia Espongiforme Bovina/metabolismo , Proteínas PrPSc/metabolismo , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/transmissão , Contaminação de Alimentos , Modelos Animais , Carne Vermelha
15.
Acta Neuropathol ; 130(2): 159-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022925

RESUMO

Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.


Assuntos
Predisposição Genética para Doença , Polimorfismo Genético , Doenças Priônicas/genética , Príons/genética , Animais , Humanos , Doenças Priônicas/metabolismo , Proteínas Priônicas , Príons/metabolismo
16.
J Virol ; 89(7): 3939-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609817

RESUMO

UNLABELLED: The genotype at polymorphic codon 129 of the PRNP gene has a profound influence on both phenotypic expression and prion strain susceptibility in humans. For example, while the most common sporadic Creutzfeldt-Jakob disease (CJD) subtype, sporadic CJD-MM1 (M1 strain), induces a single phenotype after experimental transmission regardless of the codon 129 genotype of the recipient animal, the phenotype elicited by sporadic CJD-VV2 (V2 strain), the second most common subtype, varies according to the host codon 129 genotype. In particular, the propagation of the V2 strain in codon 129 methionine homozygotes has been linked only to acquired forms of CJD such as plaque-type dura mater graft-associated CJD (dCJD), a subgroup of iatrogenic CJD with distinctive phenotypic features, but has never been observed in sporadic CJD cases. In the present report, we describe atypical CJD cases carrying codon 129 methionine homozygosity, in a neurosurgeon and in a patient with a medical history of neurosurgery without dural grafting, showing the distinctive phenotypic features and transmission properties of plaque-type dCJD. These findings raise the possibility that the two cases, previously thought to represent sporadic CJD, might actually represent acquired CJD caused by infection with the V2 strain. Thus, careful analyses of phenotypic features and transmission properties in atypical cases may be useful to distinguish acquired from sporadic cases of CJD. IMPORTANCE: Susceptibility to and phenotypic expression of Creutzfeldt-Jakob disease (CJD) depend on both the prion strain and genotype at polymorphic codon 129 of the PRNP gene. For example, propagation of the second most common sporadic CJD strain (V2 strain) into codon 129 methionine homozygotes has been linked to plaque-type dura mater graft-associated CJD (dCJD), a subgroup of iatrogenic CJD with distinctive phenotypic features, but has never been observed in sporadic CJD. In the present report, we describe atypical CJD cases in a neurosurgeon and in a patient with a medical history of neurosurgery without dural grafting, showing the distinctive phenotypic features and transmission properties of plaque-type dCJD. These findings raise the possibility that the two cases, previously considered to represent sporadic CJD, might actually represent acquired CJD caused by infection with the V2 strain.


Assuntos
Síndrome de Creutzfeldt-Jakob/transmissão , Doença Iatrogênica , Príons/genética , Príons/metabolismo , Cirurgiões , Idoso , Animais , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Metionina/genética , Camundongos , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Procedimentos Neurocirúrgicos/efeitos adversos , Exposição Ocupacional , Proteínas Priônicas
17.
Acta Neuropathol Commun ; 2: 32, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24685293

RESUMO

Dura mater graft-associated Creutzfeldt-Jakob disease (dCJD) can be divided into two subgroups that exhibit distinct clinical and neuropathological features, with the majority represented by a non-plaque-type of dCJD (np-dCJD) and the minority by a plaque-type of dCJD (p-dCJD). The two distinct phenotypes of dCJD had been considered to be unrelated to the genotype (methionine, M or valine, V) at polymorphic codon 129 of the PRNP gene or type (type 1 or type 2) of abnormal isoform of prion protein (PrPSc) in the brain, while these are major determinants of clinicopathological phenotypes of sporadic CJD (sCJD). The reason for the existence of two distinct subgroups in dCJD had remained elusive. Recent progress in research of the pathogenesis of dCJD has revealed that two distinct subgroups of dCJD are caused by infection with different PrPSc strains from sCJD, i.e., np-dCJD caused by infection with sCJD-MM1/MV1, and p-dCJD caused by infection with sCJD-VV2 or -MV2. These studies have also revealed previously unrecognized problems as follows: (i) the numbers of p-dCJD patients may increase in the future, (ii) the potential risks of secondary infection from dCJD, particularly from p-dCJD, may be considerable, and (iii) the effectiveness of the current PrPSc decontamination procedures against the PrPSc from p-dCJD is uncertain. To prevent secondary infection from p-dCJD, the establishment of effective decontamination procedures is an urgent issue. In this review, we summarize the past and future problems surrounding dCJD.


Assuntos
Transplante de Tecido Encefálico/efeitos adversos , Síndrome de Creutzfeldt-Jakob/epidemiologia , Síndrome de Creutzfeldt-Jakob/etiologia , Dura-Máter , Animais , Dura-Máter/cirurgia , Dura-Máter/transplante , Dura-Máter/virologia , Humanos
18.
PLoS One ; 8(12): e82538, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367521

RESUMO

The central event in prion infection is the conformational conversion of host-encoded cellular prion protein (PrP(C)) into the pathogenic isoform (PrP(Sc)). Diverse mammalian species possess the cofactors required for in vitro replication of PrP(Sc) by protein-misfolding cyclic amplification (PMCA), but lower organisms, such as bacteria, yeasts, and insects, reportedly lack the essential cofactors. Various cellular components, such as RNA, lipids, and other identified cofactor molecules, are commonly distributed in both eukaryotes and prokaryotes, but the reasons for the absence of cofactor activity in lower organisms remain to be elucidated. Previously, we reported that brain-derived factors were necessary for the in vitro replication of glycosylphosphatidylinositol-anchored baculovirus-derived recombinant PrP (Bac-PrP). Here, we demonstrate that following protease digestion and heat treatment, insect cell lysates had the functional cofactor activity required for Bac-PrP replication by PMCA. Mammalian PrP(Sc) seeds and Bac-PrP(Sc) generated by PMCA using Bac-PrP and insect cell-derived cofactors showed similar pathogenicity and produced very similar lesions in the brains of inoculated mice. These results suggested that the essential cofactors required for the high-fidelity replication of mammalian PrP(Sc) were present in the insect cells but that the cofactor activity was masked or inhibited in the native state. We suggest that not only RNA, but also DNA, are the key components of PMCA, although other cellular factors were necessary for the expression of the cofactor activity of nucleic acids. PMCA using only insect cell-derived substances (iPMCA) was highly useful for the ultrasensitive detection of PrP(Sc) of some prion strains.


Assuntos
Endopeptidase K/metabolismo , Glicosilfosfatidilinositóis/química , Temperatura Alta , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Príons/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Bioensaio , Western Blotting , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Acta Neuropathol Commun ; 1: 74, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24252157

RESUMO

BACKGROUND: Sporadic Creutzfeldt-Jakob disease is classified according to the genotype at polymorphic codon 129 (M or V) of the prion protein (PrP) gene and the type (1 or 2) of abnormal isoform of PrP (PrPSc) in the brain. The most complicated entity in the current classification system is MV2, since it shows wide phenotypic variations, i.e., MV2 cortical form (MV2C), MV2 with kuru plaques (MV2K), or a mixed form (MV2K + C). To resolve their complicated pathogenesis, we performed a comprehensive analysis of the three MV2 subgroups based on histopathological, molecular, and transmission properties. RESULTS: In histopathological and molecular analyses, MV2C showed close similarity to MM2 cortical form (MM2C) and could be easily discriminated from the other MV2 subgroups. By contrast, MV2K and MV2K + C showed the same molecular type and the same transmission type, and the sole difference between MV2K and MV2K + C was the presence of cortical pathology characteristic of MV2C/MM2C. The remarkable molecular feature of MV2K or MV2K + C was a mixture of type 2 PrPSc and intermediate type PrPSc, which shows intermediate electrophoretic mobility between types 1 and 2 PrPSc. Modeling experiments using PrP-humanized mice indicated that MV2K contains a mixture of intermediate type PrPSc with the 129M genotype (Mi PrPSc) and type 2 PrPSc with the 129V genotype (V2 PrPSc) that originated from V2 PrPSc, whereas MV2C + K may also contain type 2 PrPSc with the 129M genotype and cortical pathology (M2C PrPSc) that lacks infectivity to the PrP-humanized mice in addition to Mi and V2 PrPSc. CONCLUSIONS: Taken together, the present study suggests that the phenotypic heterogeneity of MV2 stems from their different PrPSc origin(s).


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Proteínas PrPSc/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Códon , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/metabolismo , Técnicas de Introdução de Genes , Genótipo , Humanos , Imuno-Histoquímica , Camundongos Transgênicos , Polimorfismo Genético , Proteínas PrPSc/metabolismo
20.
BMC Vet Res ; 9: 134, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23835086

RESUMO

BACKGROUND: Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. RESULTS: Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. CONCLUSIONS: Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource.


Assuntos
Encéfalo/metabolismo , Encefalopatia Espongiforme Bovina/prevenção & controle , Minerais/metabolismo , Proteínas PrPSc/metabolismo , Animais , Bioensaio/métodos , Produtos Biológicos/metabolismo , Western Blotting/veterinária , Bovinos , Histocitoquímica/veterinária , Temperatura Alta , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas PrPSc/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA