Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 8(3): e2301343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032133

RESUMO

Owing to their high porosity and tunability, porous solids such as metal-organic frameworks (MOFs), zeolites, or activated carbons (ACs) are of great interest in the fields of air purification, gas separation, and catalysis, among others. Nonetheless, these materials are usually synthetized as powders and need to be shaped in a more practical way that does not modify their intrinsic property (i.e., porosity). Elaborating porous, freestanding and flexible sheets is a relevant shaping strategy. However, when high loadings (>70 wt.%) are achieved the mechanical properties are challenged. A new straightforward and green method involving the combination softwood bleached kraft pulp fibers (S) and nano-fibrillated cellulose (NFC) is reported, where S provides flexibility while NFC acts as a micro-structuring and mechanical reinforcement agent to form high loadings porous solids paper sheets (>70 wt.%). The composite has unobstructed porosity and good mechanical strength. The sheets prepared with various fillers (MOFs, ACs, and zeolites) can be rolled, handled, and adapted to different uses, such as air purification. As an example of potential application, a MOF paper composite has been considered for the capture of polar volatile organic compounds exhibiting better performance than beads and granules.

2.
ACS Appl Mater Interfaces ; 13(8): 10313-10320, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599478

RESUMO

Temperature characterization and quantification at the nanoscale remain core challenges in applications based on photoinduced heating of nanoparticles. Here, we propose a new approach to obtain quantitative temperature measurements on individual nanoparticles by combining modulated photothermal stimulation and heterodyne digital holography. From full-field reconstructed holograms, the temperature is determined with a precision of 0.3 K via a simple approach without requiring any calibration or fitting parameters. As an application, the dependence of temperature on the aspect ratio of gold nanoparticles is investigated. A good agreement with numerical simulation is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA