RESUMO
Survival relies on an organism's intrinsic ability to instinctively react to stimuli such as food, water, and threats, ensuring the fundamental ability to feed, drink, and avoid danger even in the absence of prior experience. These natural, unconditioned stimuli can also facilitate associative learning, where pairing them consistently with neutral cues will elicit responses to these cues. Threat conditioning, a well-explored form of associative learning, commonly employs painful electric shocks, mimicking injury, as unconditioned stimuli. It remains elusive whether actual injury or pain is necessary for effective learning, or whether the threat of harm is sufficient. Approaching predators create looming shadows and sounds, triggering strong innate defensive responses like escape and freezing. This study investigates whether visual looming stimuli can induce learned freezing or learned escape responses to a conditioned stimulus in male rats. Surprisingly, pairing a neutral tone with a looming stimulus only weakly evokes learned defensive responses, in contrast to the strong responses observed when the looming stimulus is replaced by a shock. This dissociation sheds light on the boundaries for learned defensive responses thereby impacting our comprehension of learning processes and defensive strategies.
Assuntos
Condicionamento Clássico , Animais , Masculino , Ratos , Condicionamento Clássico/fisiologia , Reação de Fuga/fisiologia , Medo/fisiologia , Eletrochoque , Comportamento Animal/fisiologia , Sinais (Psicologia)RESUMO
During locomotion, most vertebrates-and invertebrates such as Drosophila melanogaster-are able to quickly adapt to terrain irregularities or avoid physical threats by integrating sensory information along with motor commands. Key to this adaptability are leg mechanosensory structures, which assist in motor coordination by transmitting external cues and proprioceptive information to motor centers in the central nervous system. Nevertheless, how different mechanosensory structures engage these locomotor centers remains poorly understood. Here, we tested the role of mechanosensory structures in movement initiation by optogenetically stimulating specific classes of leg sensory structures. We found that stimulation of leg mechanosensory bristles (MsBs) and the femoral chordotonal organ (ChO) is sufficient to initiate forward movement in immobile animals. While the stimulation of the ChO required brain centers to induce forward movement, unexpectedly, brief stimulation of leg MsBs triggered a fast response and sustained motor activity dependent only on the ventral nerve cord (VNC). Moreover, this leg-MsB-mediated movement lacked inter- and intra-leg coordination but preserved antagonistic muscle activity within joints. Finally, we show that leg-MsB activation mediates strong avoidance behavior away from the stimulus source, which is preserved even in the absence of a central brain. Overall, our data show that mechanosensory stimulation can elicit a fast motor response, independently of central brain commands, to evade potentially harmful stimuli. In addition, it sheds light on how specific sensory circuits modulate motor control, including initiation of movement, allowing a better understanding of how different levels of coordination are controlled by the VNC and central brain locomotor circuits.
Assuntos
Drosophila melanogaster , Locomoção , Animais , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Mecanorreceptores/fisiologia , Atividade Motora/fisiologia , Aprendizagem da Esquiva/fisiologia , Extremidades/fisiologia , Optogenética , FemininoRESUMO
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Assuntos
Altruísmo , Roedores , Animais , Emoções , Empatia , Humanos , Comportamento SocialRESUMO
Adjusting to a dynamic environment involves fast changes in the body's internal state, characterized by coordinated alterations in brain activity and physiological and motor responses. Threat-induced defensive states are a classic case of coordinated adjustment of bodily responses, cardiac regulation being one of the best characterized examples in vertebrates. A great deal is known regarding the neural basis of invertebrate defensive behaviors, mainly in Drosophila melanogaster. However, whether physiological changes accompany these remains unknown. Here, we set out to describe the internal bodily state of fruit flies upon an inescapable threat and found cardiac acceleration during running and deceleration during freezing. In addition, we found that freezing leads to increased cardiac pumping from the abdomen toward the head-thorax, suggesting mobilization of energy resources. Concordantly, threat-triggered freezing reduces sugar levels in the hemolymph and renders flies less resistant to starvation. The cardiac responses observed during freezing were absent during spontaneous immobility, underscoring the active nature of freezing response. Finally, we show that baseline cardiac activity predicts the amount of freezing upon threat. This work reveals a remarkable similarity with the cardiac responses of vertebrates, suggesting an evolutionarily convergent defensive state in flies. Our findings are at odds with the widespread view that cardiac deceleration while freezing has first evolved in vertebrates and that it is energy sparing. Investigating the physiological changes coupled to defensive behaviors in the fruit fly has revealed that freezing is costly yet accompanied by cardiac deceleration and points to heart activity as a key modulator of defensive behaviors.
Assuntos
Drosophila melanogaster , Inanição , Animais , Drosophila/fisiologiaRESUMO
Social hierarchy is a potent modulator of behavior, that is typically established through overt agonistic interactions between individuals in the group. Once established, social ranks are maintained through subtler interactions allowing the redirection of energy away from agonistic interactions towards other needs. The available tasks for assessing social rank in rats allow the study of the mechanisms by which social hierarches are formed in early phases but fail to assess the maintenance of established hierarchies between stable pairs of animals, which might rely on distinct neurobiological mechanisms. Here we present and validate a novel trial-based dominancy assay, the modified Food Competition test, where established social hierarchies can be identified in the home cage of non-food deprived pairs of male rats. In this task, we introduce a small conflict in the home cage, where access to a new feeder containing palatable pellets can only be gained by one animal at a time. We found that this subtle conflict triggered asymmetric social interactions and resulted in higher consumption of food by one of the animals in the pair, which reliably predicted hierarchy in other tests. Our findings reveal stable dominance status in pair-housed rats and provide a novel tool for the evaluation of established social hierarchies, the modified Food Competition test, that is robust and easy to implement.
Assuntos
Comportamento Animal , Comportamento Competitivo , Hierarquia Social , Predomínio Social , Animais , Comportamento Alimentar , Alimentos , Masculino , Ratos , Ratos Sprague-Dawley , RecompensaRESUMO
Persuasion is a crucial component of the courtship ritual needed to overcome contact aversion. In fruit flies, it is well established that the male courtship song prompts receptivity in female flies, in part by causing sexually mature females to slow down and pause, allowing copulation. Whether the above receptivity behaviours require the suppression of contact avoidance or escape remains unknown. Here we show, through genetic manipulation of neurons we identified as required for female receptivity, that male song induces avoidance/escape responses that are suppressed in wild type flies. First, we show that silencing 70A09 neurons leads to an increase in escape, as females increase their walking speed during courtship together with an increase in jumping and a reduction in pausing. The increase in escape response is specific to courtship, as escape to a looming threat is not intensified. Activation of 70A09 neurons leads to pausing, confirming the role of these neurons in escape modulation. Finally, we show that the escape displays by the female result from the presence of a courting male and more specifically from the song produced by a courting male. Our results suggest that courtship song has a dual role, promoting both escape and pause in females and that escape is suppressed by the activity of 70A09 neurons, allowing mating to occur.
Assuntos
Copulação/fisiologia , Drosophila melanogaster/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Vocalização Animal/fisiologia , Animais , Comunicação Celular , Corte , Feminino , Masculino , Neurônios/fisiologiaRESUMO
Living in a group allows individuals to decrease their defenses, enabling other beneficial behaviors such as foraging. The detection of a threat through social cues is widely reported, however, the safety cues that guide animals to break away from a defensive behavior and resume alternate activities remain elusive. Here we show that fruit flies display a graded decrease in freezing behavior, triggered by an inescapable threat, with increasing group sizes. Furthermore, flies use the cessation of movement of other flies as a cue of threat and its resumption as a cue of safety. Finally, we find that lobula columnar neurons, LC11, mediate the propensity for freezing flies to resume moving in response to the movement of others. By identifying visual motion cues, and the neurons involved in their processing, as the basis of a social safety cue this study brings new insights into the neuronal basis of safety in numbers.
Assuntos
Comportamento Animal , Drosophila/fisiologia , Neurônios/fisiologia , Segurança , Comportamento Social , Animais , Sinais (Psicologia) , Feminino , CongelamentoRESUMO
Animals use auditory cues generated by defensive responses of others to detect impending danger. Here we identify a neural circuit in rats involved in the detection of one such auditory cue, the cessation of movement-evoked sound resulting from freezing. This circuit comprises the dorsal subnucleus of the medial geniculate body (MGD) and downstream areas, the ventral area of the auditory cortex (VA), and the lateral amygdala (LA). This study suggests a role for the auditory offset pathway in processing a natural sound cue of threat.
Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Corpos Geniculados/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Masculino , Ratos Sprague-DawleyRESUMO
Social cues of threat are widely reported [1-3], whether actively produced to trigger responses in others such as alarm calls or by-products of an encounter with a predator, like the defensive behaviors themselves such as escape flights [4-14]. Although the recognition of social alarm cues is often innate [15-17], in some instances it requires experience to trigger defensive responses [4, 7]. One mechanism proposed for how learning from self-experience contributes to social behavior is that of auto-conditioning, whereby subjects learn to associate their own behaviors with relevant trigger events. Through this process, the same behaviors, now displayed by others, gain meaning [18, 19] (but see [20]). Although it has been shown that only animals with prior experience with shock display observational freezing [21-25], suggesting that auto-conditioning could mediate this process, evidence for this hypothesis was lacking. Previously we found that, when a rat freezes, the silence that results from immobility triggers observational freezing in its cage-mate, provided the cage-mate had experienced shocks before [24]. Therefore, in our study, auto-conditioning would correspond to rats learning to associate shock with their own response to it-freezing. Using a combination of behavioral and optogenetic manipulations, here, we show that freezing becomes an alarm cue by a direct association with shock. Our work shows that auto-conditioning can indeed modulate social interactions, expanding the repertoire of cues mediating social information exchange, providing a framework to study how the neural circuits involved in the self-experience of defensive behaviors overlap with the ones involved in socially triggered defensive behaviors.
Assuntos
Condicionamento Psicológico , Sinais (Psicologia) , Reação de Congelamento Cataléptica , Aprendizagem , Ratos/psicologia , Animais , Acontecimentos que Mudam a Vida , Masculino , Ratos Sprague-DawleyRESUMO
Group behaviour has been extensively studied in canonically social swarming, shoaling and flocking vertebrates and invertebrates, providing great insight into the behavioural and ecological aspects of group living. However, the search for its neuronal basis is lagging behind. In the natural environment, Drosophila melanogaster, increasingly used as a model to study neuronal circuits and behaviour, spend their lives surrounded by several conspecifics of different stages, as well as heterospecifics. Despite their dynamic multi-organism natural environment, the neuronal basis of social behaviours has been typically studied in dyadic interactions, such as mating or aggression. This review will focus on recent studies regarding how the behaviour of fruit flies can be shaped by the nature of the surrounding group. We argue that the rich social environment of Drosophila melanogaster, its arsenal of neurogenetic tools and the ability to use large sample sizes for detailed quantitative behavioural analysis makes this species ideal for mechanistic studies of group behaviour.
Assuntos
Drosophila melanogaster/fisiologia , Comportamento Social , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologiaRESUMO
The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly's walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors.
Assuntos
Drosophila melanogaster/fisiologia , Reação de Fuga/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila melanogaster/genética , Neurônios/metabolismo , OptogenéticaRESUMO
When animals and their offspring are threatened, parents switch from self-defense to offspring protection. How self-defense is suppressed remains elusive. We postulated that suppression of the self-defense response, freezing, is gated via oxytocin acting in the centro-lateral amygdala (CeL). We found that rat dams conditioned to fear an odor, froze when tested alone, whereas if pups were present, they remained in close contact with them or targeted the threat. Furthermore, blocking oxytocin signaling in the CeL prevented the suppression of maternal freezing. Finally, pups exposed to the odor in the presence of the conditioned dam later froze when re-exposed alone. However, if oxytocin signaling in the dam had been blocked, pups failed to learn. This study provides a functional role for the well-described action of oxytocin in the central amygdala, and demonstrates that self-defense suppression allows for active pup protection and mother-pup interactions crucial for pup threat learning.
Assuntos
Comportamento Animal , Núcleo Central da Amígdala/fisiologia , Comportamento Materno , Ocitocina/metabolismo , Animais , Animais Recém-Nascidos , Mães , RatosRESUMO
Avoiding or escaping a predator is arguably one of the most important functions of a prey's brain, hence of most animals' brains. Studies on fear conditioning have greatly advanced our understanding of the circuits that regulate learned defensive behaviours. However, animals possess a multitude of threat detection mechanisms, from hardwired circuits that ensure innate responses to predator cues, to the use of social information. Surprisingly, only more recently have these circuits captured the attention of a wider range of researchers working on different species and behavioural paradigms. These have shed new light into the mechanisms of threat detection revealing conservation of the kinds of cues animals use and of its underlying detection circuits across vertebrates. As most of these studies focus on single cues, we argue for the need to study multisensory integration, a process that we believe is determinant for the prey's defence responses.
Assuntos
Neurônios/fisiologia , Vertebrados/fisiologia , Animais , Encéfalo/fisiologia , Sinais (Psicologia) , Medo/fisiologia , AprendizagemRESUMO
Animals often are prosocial, displaying behaviors that result in a benefit to one another [1-15] even in the absence of self-benefit [16-21] (but see [22-25]). Several factors have been proposed to modulate these behaviors, namely familiarity [6, 13, 18, 20] or display of seeking behavior [16, 21]. Rats have been recently shown to be prosocial under distress [17, 18] (but see [26-29]); however, what drives prosociality in these animals remains unclear. To address this issue, we developed a two-choice task in which prosocial behavior did not yield a benefit or a cost to the focal rat. We used a double T-maze in which only the focal rat controlled access to the food-baited arms of its own and the recipient rat's maze. In this task, the focal rat could choose between one side of the maze, which yielded food only to itself (selfish choice), and the opposite side, which yielded food to itself and the recipient rat (prosocial choice). Rats showed a high proportion of prosocial choices. By manipulating reward delivery to the recipient and its ability to display a preference for the baited arm, we found that the display of food-seeking behavior leading to reward was necessary to drive prosocial choices. In addition, we found that there was more social investigation between rats in selfish trials than in prosocial trials, which may have influenced the focals' choices. This study shows that rats provide access to food to others in the absence of added direct self-benefit, bringing new insights into the factors that drive prosociality.
Assuntos
Altruísmo , Comportamento de Escolha/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Social , Análise de Variância , Animais , Aprendizagem em Labirinto , Ratos , RecompensaAssuntos
Comportamento Cooperativo , Dípteros/fisiologia , Medo , Ratos/fisiologia , Meio Social , Animais , Condicionamento Clássico , PortugalRESUMO
The rat is emerging as a powerful model for studying cognition and its neural bases. Extending this work to the social domain requires understanding better how rats transmit and interpret social information. A recent study highlights a novel role for sniffing as a channel for such social communication.
Assuntos
Comunicação Animal , Comportamento Animal/fisiologia , Hierarquia Social , Inalação/fisiologia , Comportamento Social , Animais , Feminino , MasculinoRESUMO
Ultimately associative learning is a function of the temporal features and relationships between experienced stimuli. Nevertheless how time affects the neural circuit underlying this form of learning remains largely unknown. To address this issue, we used single-trial auditory trace fear conditioning and varied the length of the interval between tone and foot-shock. Through temporary inactivation of the amygdala, medial prefrontal-cortex (mPFC), and dorsal-hippocampus in rats, we tested the hypothesis that different temporal intervals between the tone and the shock influence the neuronal structures necessary for learning. With this study we provide the first experimental evidence showing that temporarily inactivating the amygdala before training impairs auditory fear learning when there is a temporal gap between the tone and the shock. Moreover, imposing a short interval (5 s) between the two stimuli also relies on the mPFC, while learning the association across a longer interval (40 s) becomes additionally dependent on a third structure, the dorsal-hippocampus. Thus, our results suggest that increasing the interval length between tone and shock leads to the involvement of an increasing number of brain areas in order for the association between the two stimuli to be acquired normally. These findings demonstrate that the temporal relationship between events is a key factor in determining the neuronal mechanisms underlying associative fear learning.
RESUMO
The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm to study empathy as a social loop.
Assuntos
Empatia/fisiologia , Congelamento , Modelos Psicológicos , Animais , Comportamento Animal/fisiologia , Medo , Feminino , Humanos , Ratos , Ratos Long-Evans , Comportamento Social , Espectrografia do SomRESUMO
The auditory system has two parallel streams in the brain that have been implicated in auditory fear learning. The lemniscal stream has selective neurons that are tonotopically organized and is thought to be important for sound discrimination. The nonlemniscal stream has less selective neurons, which are not tonotopically organized, and is thought to be important for multimodal processing and for several forms of learning. Therefore, it has been hypothesized that the lemniscal, but not the nonlemniscal, pathway supports discriminative fear to auditory cues. To test this hypothesis we assessed the effect of electrolytic lesions to the ventral, or medial, division of the medial geniculate nucleus (MGv or MGm, which correspond, respectively, to the lemniscal and the nonlemniscal auditory pathway to amygdala) on the acquisition, expression and extinction of fear responses in discriminative auditory fear conditioning, where one tone is followed by shock (conditioned stimulus, CS(+)), and another is not (CS(-)). Here we show that with single-trial conditioning control, MGv- and MGm-lesioned male rats acquire nondiscriminative fear of both the CS(+) and the CS(-). However, after multiple-trial conditioning, control rats discriminate between the CS(+) and CS(-), whereas MGv- and MGm-lesioned do not. Furthermore, post-training lesions of MGm, but not MGv, lead to impaired expression of discriminative fear. Finally, MGm-lesioned rats display high levels of freezing to both the CS(+) and CS(-) even after an extinction session to the CS(+). In summary, our findings suggest that the lemniscal pathway is important for discriminative learning, whereas the nonlemniscal is important for negatively regulating fear responses.