Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509563

RESUMO

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is involved in numerous physiological functions and plays a key role in pain modulation including neuropathic pain. Diabetic neuropathy is a common complication of diabetes mellitus often accompanied by chronic neuropathic pain. Animal models of diabetes offer relevant tools for studying the pathophysiological mechanisms and pharmacological sensitivity of diabetic neuropathic pain and for identifying new therapeutic targets. In this review, we report data from preclinical work published over the last 15 years on the analgesic activity of drugs acting on the serotonergic system, such as serotonin and noradrenaline reuptake inhibitor (SNRI) antidepressants, and on the involvement of certain serotonin receptors-in particular 5-HT1A, 5-HT2A/2c and 5-HT6 receptors-in rodent models of painful diabetic neuropathy.

2.
Biomolecules ; 13(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830733

RESUMO

Diabetic neuropathy is often associated with chronic pain. Serotonin type 6 (5-HT6) receptor ligands, particularly inverse agonists, have strong analgesic potential and may be new candidates for treating diabetic neuropathic pain and associated co-morbid cognitive deficits. The current study addressed the involvement of 5-HT6 receptor constitutive activity and mTOR signaling in an experimental model of diabetic neuropathic pain induced by streptozocin (STZ) injection in the rat. Here, we show that mechanical hyperalgesia and associated cognitive deficits are suppressed by the administration of 5-HT6 receptor inverse agonists or rapamycin. The 5-HT6 receptor ligands also reduced tactile allodynia in traumatic and toxic neuropathic pain induced by spinal nerve ligation and oxaliplatin injection. Furthermore, both painful and co-morbid cognitive symptoms in diabetic rats are reduced by intrathecal delivery of a cell-penetrating peptide that disrupts 5-HT6 receptor-mTOR physical interaction. These findings demonstrate the deleterious influence of the constitutive activity of spinal 5-HT6 receptors upon painful and cognitive symptoms in diabetic neuropathic pains of different etiologies. They suggest that targeting the constitutive activity of 5-HT6 receptors with inverse agonists or disrupting the 5-HT6 receptor-mTOR interaction might be valuable strategies for the alleviation of diabetic neuropathic pain and cognitive co-morbidities.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Agonismo Inverso de Drogas , Ligantes , Serotonina/farmacologia , Hiperalgesia , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA