Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 59(5): 623-634, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894205

RESUMO

Mechanical ventilation with O2-rich gas (MV-O2) inhibits alveologenesis and lung growth. We previously showed that MV-O2 increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O2 reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O2 reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O2 for 8-24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O2 inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O2?


Assuntos
Apoptose/efeitos dos fármacos , Displasia Broncopulmonar/tratamento farmacológico , Elafina/farmacologia , Receptores ErbB/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Sobrevivência Celular , Células Cultivadas , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Fator 4 Semelhante a Kruppel , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos BALB C , Organogênese , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Transdução de Sinais
2.
Front Microbiol ; 8: 2348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234314

RESUMO

Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo. Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740), a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.

3.
Am J Physiol Lung Cell Mol Physiol ; 308(5): L464-78, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539853

RESUMO

Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.


Assuntos
Elastina/metabolismo , Matriz Extracelular/metabolismo , Haploinsuficiência , Pulmão/patologia , Respiração Artificial , Remodelação Vascular , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose , Caderinas/metabolismo , Feminino , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Microvasos/fisiopatologia , Elastase Pancreática/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia
4.
Am J Physiol Lung Cell Mol Physiol ; 298(1): L23-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854954

RESUMO

Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD.


Assuntos
Ar , Apoptose , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Patológica/patologia , Alvéolos Pulmonares/patologia , Respiração Artificial , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Elastina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Immunoblotting , Pulmão/metabolismo , Camundongos , Modelos Biológicos , Fosfoproteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Proteína Smad2/metabolismo , Propriedades de Superfície , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 294(1): L3-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17934062

RESUMO

Prolonged mechanical ventilation (MV) with O2-rich gas inhibits lung growth and causes excess, disordered accumulation of lung elastin in preterm infants, often resulting in chronic lung disease (CLD). Using newborn mice, in which alveolarization occurs postnatally, we designed studies to determine how MV with either 40% O2 or air might lead to dysregulated elastin production and impaired lung septation. MV of newborn mice for 8 h with either 40% O2 or air increased lung mRNA for tropoelastin and lysyl oxidase, relative to unventilated controls, without increasing lung expression of genes that regulate elastic fiber assembly (lysyl oxidase-like-1, fibrillin-1, fibrillin-2, fibulin-5, emilin-1). Serine elastase activity in lung increased fourfold after MV with 40% O2, but not with air. We then extended MV with 40% O2 to 24 h and found that lung content of tropoelastin protein doubled, whereas lung content of elastin assembly proteins did not change (lysyl oxidases, fibrillins) or decreased (fibulin-5, emilin-1). Quantitative image analysis of lung sections showed that elastic fiber density increased by 50% after MV for 24 h, with elastin distributed throughout the walls of air spaces, rather than at septal tips, as in control lungs. Dysregulation of elastin was associated with a threefold increase in lung cell apoptosis (TUNEL and caspase-3 assays), which might account for the increased air space size previously reported in this model. Our findings of increased elastin synthesis, coupled with increased elastase activity and reduced lung abundance of proteins that regulate elastic fiber assembly, could explain altered lung elastin deposition, increased apoptosis, and defective septation, as observed in CLD.


Assuntos
Elastina/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Alvéolos Pulmonares/fisiologia , Respiração Artificial , Animais , Animais Recém-Nascidos , Apoptose , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Elastase Pancreática/metabolismo , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação
6.
Am J Physiol Lung Cell Mol Physiol ; 293(5): L1099-110, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17704187

RESUMO

Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice. Am J Physiol Lung Cell Mol Physiol 293: , 2007. First published August 17, 2007; - Mechanical ventilation (MV) with O(2)-rich gas offers life-saving treatment for extremely premature infants with respiratory failure but often leads to neonatal chronic lung disease (CLD), characterized by defective formation of alveoli and blood vessels in the developing lung. We discovered that MV of 2- to 4-day-old mice with 40% O(2) for 8 h, compared with unventilated control pups, reduced lung expression of genes that regulate lung septation and angiogenesis (VEGF-A and its receptor, VEGF-R2; PDGF-A; and tenascin-C). MV with air for 8 h yielded similar results for PDGF-A and tenascin-C but did not alter lung mRNA expression of VEGF or VEGF-R2. MV of 4- to 6-day-old mice with 40% O(2) for 24 h reduced lung protein abundance of VEGF-A, VEGF-R2, PDGF-A, and tenascin-C and resulted in lung structural abnormalities consistent with evolving CLD. After MV with 40% O(2) for 24 h, lung volume was similar to unventilated controls, whereas distal air space size, assessed morphometrically, was greater in lungs of ventilated pups, indicative of impaired septation. Immunostaining for vimentin, which is expressed in myofibroblasts, was reduced in distal lung after 24 h of MV with 40% O(2). These molecular, cellular, and structural changes occurred without detectable lung inflammation as evaluated by histology and assays for proinflammatory cytokines, myeloperoxidase activity, and water content in lung. Thus lengthy MV of newborn mice with O(2)-rich gas reduces lung expression of genes and proteins that are critical for normal lung growth and development. These changes yielded lung structural defects similar to those observed in evolving CLD.


Assuntos
Biomarcadores/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Oxigênio/metabolismo , Alvéolos Pulmonares/patologia , Respiração Artificial , Animais , Animais Recém-Nascidos , Citocinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Oxigenoterapia , Alvéolos Pulmonares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA