Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780051

RESUMO

The generation of current-induced torques through the spin Hall effect in Pt has been key to the development of spintronics. In prototypical ferromagnetic-metal/Pt devices, the characteristic length of the torque generation is known to be about 1 nm due to the short spin diffusion length of Pt. Here, we report the observation of a long-range current-induced torque in Ni/Pt bilayers. We demonstrate that when Ni is used as the ferromagnetic layer, the torque efficiency increases with the Pt thickness, even when it exceeds 10 nm. The torque efficiency is also enhanced by increasing the Ni thickness, providing evidence that the observed torque cannot be attributed to the spin Hall effect in the Pt layer. These findings, coupled with our semirealistic tight-binding calculations of the current-induced torque, suggest the possibility that the observed long-range torque is dominated by the orbital Hall effect in the Pt layer.

2.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619844

RESUMO

Recent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi2Te4 as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work, we open up new possibilities for innovative applications in topological spintronics and orbitronics.

3.
Phys Rev Lett ; 132(5): 056701, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364129

RESUMO

We demonstrate the emergence of a pronounced thermal transport in the recently discovered class of magnetic materials-altermagnets. From symmetry arguments and first-principles calculations performed for the showcase altermagnet, RuO_{2}, we uncover that crystal Nernst and crystal thermal Hall effects in this material are very large and strongly anisotropic with respect to the Néel vector. We find the large crystal thermal transport to originate from three sources of Berry's curvature in momentum space: the Weyl fermions due to crossings between well-separated bands, the strong spin-flip pseudonodal surfaces, and the weak spin-flip ladder transitions, defined by transitions among very weakly spin-split states of similar dispersion crossing the Fermi surface. Moreover, we reveal that the anomalous thermal and electrical transport coefficients in RuO_{2} are linked by an extended Wiedemann-Franz law in a temperature range much wider than expected for conventional magnets. Our results suggest that altermagnets may assume a leading role in realizing concepts in spin caloritronics not achievable with ferromagnets or antiferromagnets.

4.
Nano Lett ; 24(7): 2415-2420, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323579

RESUMO

Electrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements. Moreover, the effective magnetization and gyromagnetic ratios display voltage-dependent variations. A closer examination reveals that the voltage-induced changes can modulate magnetocrystalline anisotropy by several hundred gauss, while the impact on orbital magnetization remains relatively subtle. Density functional theory (DFT) calculations reveal varying d-orbital hybridizations at different voltages. This research unveils intricate physics within the Kagome lattice magnet and further underscores the potential of electrostatic manipulation in steering magnetism with promising implications for the development of spintronic devices.

6.
Nat Nanotechnol ; 18(10): 1132-1138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550573

RESUMO

The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs-1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba-Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba-Edelstein-like conversion processes.

7.
Nano Lett ; 23(15): 7070-7075, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466639

RESUMO

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.

8.
Phys Rev Lett ; 130(24): 246701, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390424

RESUMO

While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.


Assuntos
Eletricidade , Torque , Movimento (Física)
9.
Phys Rev Lett ; 129(9): 097204, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083678

RESUMO

We propose a concept of noncollinear spin current, whose spin polarization varies in space even in nonmagnetic crystals. While it is commonly assumed that the spin polarization of the spin Hall current is uniform, asymmetric local crystal potential generally allows the spin polarization to be noncollinear in space. Based on microscopic considerations, we demonstrate that such noncollinear spin Hall currents can be observed, for example, in layered Kagome Mn_{3}X (X=Ge, Sn) compounds. Moreover, by referring to atomistic spin dynamics simulations we show that noncollinear spin currents can be used to switch the chiral spin texture of Mn_{3}X in a deterministic way even in the absence of an external magnetic field. Our theoretical prediction can be readily tested in experiments, which will open a novel route toward electric control of complex spin structures in noncollinear antiferromagnets.

10.
Phys Rev Lett ; 129(9): 097201, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083680

RESUMO

Recently discovered high-quality nodal chain spin-gapless semimetals MF_{3} (M=Pd, Mn) feature an ultraclean nodal chain in the spin up channel residing right at the Fermi level and displaying a large spin gap leading to a 100% spin polarization of transport properties. Here, we investigate both intrinsic and extrinsic contributions to anomalous and spin transport in this class of materials. The dominant intrinsic origin is found to originate entirely from the gapped nodal chains without the entanglement of any other trivial bands. The side-jump mechanism is predicted to be negligibly small, but intrinsic skew scattering enhances the intrinsic Hall and Nernst signals significantly, leading to large values of respective conductivities. Our findings open a new material platform for exploring strong anomalous and spin transport properties in magnetic topological semimetals.

11.
Nat Commun ; 13(1): 5309, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085323

RESUMO

The discovery of topological states of matter has led to a revolution in materials research. When external or intrinsic parameters break symmetries, global properties of topological materials change drastically. A paramount example is the emergence of Weyl nodes under broken inversion symmetry. While a rich variety of non-trivial quantum phases could in principle also originate from broken time-reversal symmetry, realizing systems that combine magnetism with complex topological properties is remarkably elusive. Here, we demonstrate that giant open Fermi arcs are created at the surface of ultrathin hybrid magnets where the Fermi-surface topology is substantially modified by hybridization with a heavy-metal substrate. The interplay between magnetism and topology allows us to control the shape and the location of the Fermi arcs by tuning the magnetization direction. The hybridization points in the Fermi surface can be attributed to a non-trivial mixed topology and induce hot-spots in the Berry curvature, dominating spin and charge transport as well as magneto-electric coupling effects.

12.
Nano Lett ; 22(13): 5114-5119, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699946

RESUMO

We explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé g factor (g) is anisotropic: gin-plane decreases while gout-of-plane increases with increasing temperature T. Moreover, the anisotropy of the g factor (Δg) and the anisotropy of saturation magnetization (ΔMs) are correlated below 4 K, but they diverge above 4 K. We show that the electronic orbital moment contributes to the g anisotropy at lower T, while the topological orbital moment induced by thermally excited spin chirality dictates the g anisotropy at higher T. Our work suggests an interplay among topology, spin chirality, and orbital magnetism in Cu(1,3-bdc).

13.
Phys Rev Lett ; 128(6): 067201, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213174

RESUMO

We report the observation of magnetoresistance (MR) that could originate from the orbital angular momentum (OAM) transport in a permalloy (Py)/oxidized Cu (Cu^{*}) heterostructure: the orbital Rashba-Edelstein magnetoresistance. The angular dependence of the MR depends on the relative angle between the induced OAM and the magnetization in a similar fashion as the spin Hall magnetoresistance. Despite the absence of elements with large spin-orbit coupling, we find a sizable MR ratio, which is in contrast to the conventional spin Hall magnetoresistance which requires heavy elements. Through Py thickness-dependence studies, we conclude another mechanism beyond the conventional spin-based scenario is responsible for the MR observed in Py/Cu^{*} structures-originated in a sizable transport of OAM. Our findings not only suggest the current-induced torques without using any heavy elements via the OAM channel but also provide an important clue towards the microscopic understanding of the role that OAM transport can play for magnetization dynamics.

14.
J Phys Condens Matter ; 34(5)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678787

RESUMO

We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal-Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to thef-sum rule.

15.
Sci Adv ; 7(37): eabi7532, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516772

RESUMO

The bosonic analogs of topological insulators have been proposed in numerous theoretical works, but their experimental realization is still very rare, especially for spin systems. Recently, two-dimensional (2D) honeycomb van der Waals ferromagnets have emerged as a new platform for topological spin excitations. Here, via a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations, we report the realization of topological magnon insulators in CrXTe3 (X = Si, Ge) compounds. The nontrivial nature and intrinsic tunability of the gap opening at the magnon band-crossing Dirac points are confirmed, while the emergence of the corresponding in-gap topological edge states is demonstrated theoretically. The realization of topological magnon insulators with intrinsic gap-unability in this class of remarkable 2D materials will undoubtedly lead to new and fascinating technological applications in the domain of magnonics and topological spintronics.

17.
IEEE Trans Magn ; 57(7)2021.
Artigo em Inglês | MEDLINE | ID: mdl-37057056

RESUMO

Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins and magnetization. More recently interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this Roadmap paper, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, two-dimensional materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three-terminal and two-terminal SOT-magnetoresistive random-access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain wall and skyrmion racetrack memories. This paper aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.

18.
Nat Commun ; 11(1): 6304, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298908

RESUMO

While chiral spin structures stabilized by Dzyaloshinskii-Moriya interaction (DMI) are candidates as novel information carriers, their dynamics on the fs-ps timescale is little known. Since with the bulk Heisenberg exchange and the interfacial DMI two distinct exchange mechanisms are at play, the ultrafast dynamics of the chiral order needs to be ascertained and compared to the dynamics of the conventional collinear order. Using an XUV free-electron laser we determine the fs-ps temporal evolution of the chiral order in domain walls in a magnetic thin film sample by an IR pump - X-ray magnetic scattering probe experiment. Upon demagnetization we observe that the dichroic (CL-CR) signal connected with the chiral order correlator mzmx in the domain walls recovers significantly faster than the (CL + CR) sum signal representing the average collinear domain magnetization mz2 + mx2. We explore possible explanations based on spin structure dynamics and reduced transversal magnetization fluctuations inside the domain walls and find that the latter can explain the experimental data leading to different dynamics for collinear magnetic order and chiral magnetic order.

19.
Phys Rev Lett ; 125(17): 177201, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156648

RESUMO

Current-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation. We report on the large enhancement of the SOT efficiency in thulium iron garnet (TmIG)/Pt by capping with a CuO_{x} layer. Considering the weak spin-orbit coupling (SOC) of CuO_{x}, these surprising findings likely result from an orbital current generated at the interface between CuO_{x} and Pt, which is injected into the Pt layer and converted into a spin current by strong SOC. The converted spin current decays across the Pt layer and exerts a "nonlocal" torque on TmIG. This additional torque leads to a maximum colossal enhancement of the SOT efficiency of a factor 16 for 1.5 nm of Pt at room temperature, thus opening a path to increase torques while at the same time offering insights into the underlying physics of orbital transport, which has so far been elusive.

20.
Phys Rev Lett ; 124(21): 217701, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530662

RESUMO

Controlling magnetism by electric fields offers a highly attractive perspective for designing future generations of energy-efficient information technologies. Here, we demonstrate that the magnitude of current-induced spin-orbit torques in thin perpendicularly magnetized CoFeB films can be tuned and even increased by electric-field generated piezoelectric strain. Using theoretical calculations, we uncover that the subtle interplay of spin-orbit coupling, crystal symmetry, and orbital polarization is at the core of the observed strain dependence of spin-orbit torques. Our results open a path to integrating two energy efficient spin manipulation approaches, the electric-field-induced strain and the current-induced magnetization switching, thereby enabling novel device concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA