Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20430, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810809

RESUMO

The advancements in nanoscience have brought attention to the potential of utilizing nanoparticles as carriers for oral insulin administration. This study aims to investigate the effectiveness of synthesized polymeric mesoporous silica nanoparticles (MSN) as carriers for oral insulin and their interactions with insulin and IR through in-silico docking. Diabetic rats were treated with various MSN samples, including pure MSN, Amin-grafted MSN/PEG/Insulin (AMPI), Al-grafted MSN/PEG/Insulin (AlMPI), Zinc-grafted MSN/PEG/Insulin (ZNPI), and Co-grafted MSN/PEG/Insulin (CMPI). The nanocomposites were synthesized using a hybrid organic-inorganic method involving MSNs, graphene oxide, and insulin. Characterization of the nanocomposites was conducted using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In vivo tests included the examination of blood glucose levels and histopathological parameters of the liver and pancreas in type 1 diabetic rats. The MSN family demonstrated a significant reduction in blood glucose levels compared to the diabetic control group (p < 0.001). The synthesized nanocomposites exhibited safety, non-toxicity, fast operation, self-repairing pancreas, cost-effectiveness, and high efficiency in the oral insulin delivery system. In the in-silico study, Zn-grafted MSN, Co-grafted MSN, and Al-grafted MSN were selected. Docking results revealed strong interactions between MSN compounds and insulin and IR, characterized by the formation of hydrogen bonds and high binding energy. Notably, Co-grafted MSN showed the highest docking scores of -308.171 kcal/mol and -337.608 kcal/mol to insulin and IR, respectively. These findings demonstrate the potential of polymeric MSN as effective carriers for oral insulin, offering promising prospects for diabetes treatment.

2.
Analyst ; 139(17): 4356-64, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25014312

RESUMO

A novel carbon paste electrode modified with ZnO nanorods and 5-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'-AAZCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of levodopa, is described. The electrode was employed to study the electrocatalytic oxidation of levodopa, using cyclic voltammetry (CV), chronoamperometry (CHA), and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of levodopa at the surface of the modified electrode occurs at a potential of about 370 mV less positive than that of an unmodified carbon paste electrode. The SWV results exhibit a linear dynamic range from 1.0 × 10(-7) M to 7.0 × 10(-5) M and a detection limit of 3.5 × 10(-8) M for levodopa. In addition, this modified electrode was used for the simultaneous determination of levodopa and carbidopa. Finally, the modified electrode was used for the determination of levodopa and carbidopa in some real samples.


Assuntos
Carbidopa/análise , Dopaminérgicos/análise , Técnicas Eletroquímicas/métodos , Levodopa/análise , Nanotubos/química , Óxido de Zinco/química , Acrilatos/química , Carbono/química , Eletrodos , Limite de Detecção , Nanotubos/ultraestrutura , Oxirredução , Comprimidos
3.
Mater Sci Eng C Mater Biol Appl ; 36: 168-72, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433900

RESUMO

In this study, a carbon paste electrode modified with TiO2 nanoparticles and ferrocene monocarboxylic acid (FM) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of methyldopa in the presence of folic acid and glycine. The peak potentials recorded in a phosphate buffer solution (PBS) of pH7.0 were 325, 750 and 880 mV vs. Ag/AgCl/KCl (3.0M) for methyldopa, folic acid and glycine, respectively. Under the optimum pH of 7.0, the oxidation of methyldopa occurred at a potential about 160 mV less positive than that of the unmodified carbon paste electrode (CPE). The response of catalytic current with methyldopa concentration showed a linear relation in the range from 2.0×10(-7) to 1.0×10(-4)M with a detection limit of 8.0 (± 0.2)×10(-8)M.


Assuntos
Técnicas Eletroquímicas/métodos , Ácido Fólico/química , Glicina/química , Metildopa/análise , Calibragem , Carbono/química , Catálise , Eletrodos , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Metalocenos , Nanopartículas/química , Oxirredução , Comprimidos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA