Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Microsc Microanal ; 29(4): 1380-1401, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488831

RESUMO

The high detection efficiencies of direct electron detectors facilitate the routine collection of low fluence electron micrographs and diffraction patterns. Low dose and low fluence electron microscopy experiments are the only practical way to acquire useful data from beam sensitive pharmaceutical and biological materials. Appropriate modeling of low fluence images acquired using direct electron detectors is, therefore, paramount for quantitative analysis of the experimental images. We have developed a new open-source Python package to accurately model any single layer direct electron detector for low and high fluence imaging conditions, including a means to validate against experimental data through computation of modulation transfer function and detective quantum efficiency.

3.
Nanotechnology ; 33(3)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34633307

RESUMO

Here, we use electron beam induced current (EBIC) in a scanning transmission electron microscope to characterize the structure and electronic properties of Al/SiGe and Al/Si-rich/SiGe axial nanowire heterostructures fabricated by thermal propagation of Al in a SiGe nanowire. The two heterostructures behave as Schottky contacts with different barrier heights. From the sign of the beam induced current collected at the contacts, the intrinsic semiconductor doping is determined to be n-type. Furthermore, we find that the silicon-rich double interface presents a lower barrier height than the atomically sharp SiGe/Al interface. With an applied bias, the Si-rich region delays the propagation of the depletion region and presents a reduced free carrier diffusion length with respect to the SiGe nanowire. This behaviour could be explained by a higher residual doping in the Si-rich area. These results demonstrate that scanning transmission electron microscopy EBIC is a powerful method for mapping and quantifying electric fields in micrometer- and nanometer-scale devices.

4.
Microscopy (Oxf) ; 63(2): 119-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24401331

RESUMO

There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

5.
Phys Rev Lett ; 111(6): 065506, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971587

RESUMO

We report the first use of direct detection for recording electron backscatter diffraction patterns. We demonstrate the following advantages of direct detection: the resolution in the patterns is such that higher order features are visible; patterns can be recorded at beam energies below those at which conventional detectors usefully operate; high precision in cross-correlation based pattern shift measurements needed for high resolution electron backscatter diffraction strain mapping can be obtained. We also show that the physics underlying direct detection is sufficiently well understood at low primary electron energies such that simulated patterns can be generated to verify our experimental data.

6.
Ultramicroscopy ; 110(7): 744-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382479

RESUMO

The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.


Assuntos
Microscopia Eletrônica de Transmissão/instrumentação , Animais , Drosophila/virologia , Desenho de Equipamento , Microscopia Eletrônica de Transmissão/estatística & dados numéricos , Vírion/ultraestrutura
7.
Ultramicroscopy ; 107(4-5): 382-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17126490

RESUMO

Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA