RESUMO
Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Mamíferos , Animais , Mamíferos/fisiologia , Espécies IntroduzidasRESUMO
Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2 , across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favour warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
Assuntos
Ecossistema , Plantas , Mudança Climática , Madeira , TemperaturaRESUMO
The Homeric plant moly is a mysterious herb mentioned in Book 10 of the Odyssey. In the early 1980s, a pharmacological thesis to identify the plant was put forward for the first time, regarding the snowdrop (Galanthus nivalis L.) as candidate species. The proposal was inspired by the snowdrop's acetylcholinesterase (AChE)-inhibiting properties and its alleged morphological reminiscence to other plants called moly by ancient Greek herbalists. Here, we draw from a compilation of literature from various disciplines, together with an understanding of the Homeric epic as a repository of information based on oral traditions, to (i) show that the assimilation of Homer's moly to Galanthus nivalis is, at the very least, questionable and (ii) frame and support a new synthesis of the pharmacological thesis. We suggest that the uncertainty that revolves around the identity of Homer's moly can be tied to an unnamed phylogenetic clade of closely related Mediterranean native species with AChE-inhibiting properties. Further, we speculate that Homer's moly might represent an early record of an ethnobotanical complex, a sort of cultural taxon resulting from the cognitive crossbreeding of closely related taxonomic species that could have been interchangeably used due to their rough resemblance and common AChE-inhibiting properties. Such cultural taxon would have referred to the phytonym moly by the centuries-old oral traditions that ultimately crystallized in the poem. We also venture that sea daffodils (Pancratium spp.) could have greatly contributed to shaping the botanical archetype in the myth as we know it today.
Assuntos
Acetilcolinesterase , Medicina na Literatura , Filogenia , Mundo Grego , EtnobotânicaRESUMO
Phylogenetic diversity (PD)-the evolutionary history of a set of species-is conceptually linked to the maintenance of yet-to-be-discovered benefits from biodiversity or "option value." We used global phylogenetic and utilization data for birds to test the PD option value link, under the assumption that the performance of sets of PD-maximizing species at capturing known benefits is analogous to selecting the same species at a point in human history before these benefits were realized. PD performed better than random at capturing utilized bird species across 60% of tests, with performance linked to the phylogenetic dispersion and prevalence of each utilization category. Prioritizing threatened species for conservation by the PD they encapsulate performs comparably to prioritizing by their functional distinctiveness. However, species selected by each metric show low overlap, indicating that we should conserve both components of biodiversity to effectively conserve a variety of uses. Our findings provide empirical support for the link between evolutionary history and benefits for future generations.
Assuntos
Biodiversidade , Evolução Biológica , Humanos , Animais , Filogenia , Aves/genética , Espécies em Perigo de Extinção , FenbendazolRESUMO
Humans have introduced non-native trees (NNT) all over the world to take advantage of the plethora of benefits they provide. However, depending on the context, NNT may present a diverse range of effects on ecosystem services (ES), from benefits to drawbacks, which may hinder the development of policies for these species. Unfortunately, the attempts so far to understand the impacts of NNT on ES only explained a low proportion of their variation. Here we analyze the variation in impacts of NNT on regulating ecosystem services (RES) by using a global database, which covers the effect size of multiple NNT species on six RES (climate regulation, soil erosion regulation, soil fertility, soil formation, hydrological cycle regulation, and fire protection). We used a wide range of predictors to account for the context-dependency of impacts distributed in five groups: the RES type, functional traits of both the NNT and the dominant NT of the recipient ecosystem, phylogenetic and functional distances between NNT and NT, climatic context, and human population characteristics. Using boosted regression trees and regression trees, we found that the most influential predictors of NNT impacts on RES were annual mean temperatures and precipitation seasonality, followed by the type of RES, human population density, and NNT height. In regions with warm temperatures and low seasonality, NNT tended to increase RES. NNT impacts were greater in densely populated regions. Smaller NNT exerted greater positive impacts on climate regulation and soil erosion regulation in tropical regions than in other climates. We highlight that benign climates and high population density exacerbate the effects of NNT on RES, and that soil fertility is the most consistently affected RES. Knowledge of the factors that modulate NNT impacts can help to predict their potential effects on RES in different parts of the world and at various environmental settings.
Assuntos
Ecossistema , Solo , Humanos , Filogenia , TemperaturaRESUMO
Although there is growing interest in safeguarding the Tree of Life to preserve the human benefits that are directly provided by biodiversity, their evolutionary distribution remains unknown, which has hampered our understanding of the potential of phylodiversity indicators to evince them. Here, I drew on a global review of plant benefits and comprehensive phylogenetic information to breakdown their evolutionary distribution and thereby show why the commonly used Phylogenetic Diversity and Evolutionary Distinctiveness indicators can unequivocally help to preserve these natural services. Beneficial species clumped within phylogenetically overdispersed genera and closely related species often contributed very few and redundant benefits, suggesting that multiple plant lineages are required to maintain a wide variety of services. Yet, a reduced number of species stood out as multi-beneficial and evolutionarily distinct plants relative to both the entire phylogeny and the subset of beneficial species, and they collectively contributed a higher-than-expected number of records for most types of benefits. In addition to providing a clear mechanistic understanding for the recently proved success of Phylogenetic Diversity in capturing plant benefits, these findings stress the decisive role that conservation programmes aimed at protecting evolutionarily distinct taxa will play in safeguarding the beneficial potential of biodiversity for the future.
Assuntos
Evolução Biológica , Biodiversidade , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ingestão de Alimentos , Análise de Perigos e Pontos Críticos de Controle , Humanos , Filogenia , Plantas/classificaçãoRESUMO
Humanity faces the challenge of conserving the attributes of biodiversity that may be essential to secure human wellbeing. Among all the organisms that are beneficial to humans, plants stand out as the most important providers of natural resources. Therefore, identifying plant uses is critical to preserve the beneficial potential of biodiversity and to promote basic and applied research on the relationship between plants and humans. However, much of this information is often uncritical, contradictory, of dubious value or simply not readily accessible to the great majority of scientists and policy makers. Here, we compiled a genus-level dataset of plant-use records for all accepted vascular plant taxa (13489 genera) using the information gathered in the 4th Edition of Mabberley's plant-book, the most comprehensive global review of plant classification and their uses published to date. From 1974 to 2017 all the information was systematically gathered, evaluated, and synthesized by David Mabberley, who reviewed over 1000 botanical sources including modern Floras, monographs, periodicals, handbooks, and authoritative websites. Plant uses were arranged across 28 standard categories of use following the Economic Botany Data Collection Standard guidelines, which resulted in a binary classification of 9478 plant-use records pertaining human and animal nutrition, materials, fuels, medicine, poisons, social and environmental uses. Of all the taxa included in the dataset, 33% were assigned to at least one category of use, the most common being "ornamental" (26%), "medicine" (16%), "human food" (13%) and "timber" (8%). In addition to a readily available binary matrix for quantitative analyses, we provide a control text matrix that links the former to the description of the uses in Mabberley's plant-book. We hope this dataset will serve to establish synergies between scientists and policy makers interested in plant-human interactions and to move towards the complete compilation and classification of the nature's contributions to people upon which the wellbeing of future generations may depend.
Assuntos
Traqueófitas/classificação , Agricultura/legislação & jurisprudência , Curadoria de Dados , Gerenciamento de Dados , Bases de Dados Factuais , Atividades Humanas , HumanosRESUMO
Seedling planting plays a key role in active forest restoration and regeneration of managed stands. Plant attributes at outplanting can determine tree seedling survival and consequently early success of forest plantations. Although many studies show that large seedlings of the same age within a species have higher survival than small ones, others report the opposite. This may be due to differences in environmental conditions at the planting site and in the inherent functional characteristics of species. Here, we conducted a global-scale meta-analysis to evaluate the effect of seedling size on early outplanting survival. Our meta-analysis covered 86 tree species and 142 planting locations distributed worldwide. We also assessed whether planting site aridity and key plant functional traits related to abiotic and biotic stress resistance and growth capacity, namely specific leaf area and wood density, modulate this effect. Planting large seedlings within a species consistently increases survival in forest plantations worldwide. Species' functional traits modulate the magnitude of the positive seedling size-outplanting survival relationship, showing contrasting effects due to aridity and between angiosperms and gymnosperms. For angiosperms planted in arid/semiarid sites and gymnosperms in subhumid/humid sites the magnitude of the positive effect of seedling size on survival was maximized in species with low specific leaf area and high wood density, characteristics linked to high stress resistance and slow growth. By contrast, high specific leaf area and low wood density maximized the positive effect of seedling size on survival for angiosperms planted in subhumid/humid sites. Results have key implications for implementing forest plantations globally, especially for adjusting nursery cultivation to species' functional characteristics and planting site aridity. Nursery cultivation should promote large seedlings, especially for stress sensitive angiosperms planted in humid sites and for stress-resistant species planted in dry sites.
Assuntos
Plântula , Clima Tropical , Florestas , Folhas de Planta , ÁrvoresRESUMO
The divergent nature of evolution suggests that securing the human benefits that are directly provided by biodiversity may require counting on disparate lineages of the Tree of Life. However, quantitative evidence supporting this claim is still tenuous. Here, we draw on a global review of plant-use records demonstrating that maximum levels of phylogenetic diversity capture significantly greater numbers of plant-use records than random selection of taxa. Our study establishes an empirical foundation that links evolutionary history to human wellbeing, and it will serve as a discussion baseline to promote better-grounded accounts of the services that are directly provided by biodiversity.
Assuntos
Biodiversidade , Plantas , Humanos , Filogenia , Plantas/genéticaRESUMO
Understanding how species' thermal limits have evolved across the tree of life is central to predicting species' responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary 'attractors' that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.
Assuntos
Evolução Biológica , Fenômenos Fisiológicos Vegetais , Termotolerância/fisiologia , Adaptação Fisiológica , Animais , Clima , Mudança Climática , Planeta Terra , Ecologia , Temperatura Alta , TemperaturaRESUMO
A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity-ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity-ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity-ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.
Assuntos
Biodiversidade , Ecossistema , Alemanha , Filogenia , PlantasRESUMO
Dominants are key species that shape ecosystem functioning. Plant dominance is typically assessed on aboveground features. However, belowground, individual species may not scale proportionally in relation to their aboveground dimension. This is especially important in ecosystems where most biomass is allocated belowground, including grassy and shrubby biomes.
Assuntos
Ecossistema , Plantas , Biomassa , Raízes de PlantasRESUMO
According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments.
Assuntos
Biodiversidade , Ecologia , GeografiaRESUMO
Although the description of bioregions dates back to the origin of biogeography, the processes originating their associated species pools have been seldom studied. Ancient historical events are thought to play a fundamental role in configuring bioregions, but the effects of more recent events on these regional biotas are largely unknown. We used a network approach to identify regional and sub-regional faunas of European Carabus beetles and developed a method to explore the relative contribution of dispersal barriers, niche similarities and phylogenetic history on their configuration. We identify a transition zone matching the limit of the ice sheets at the Last Glacial Maximum. While southern species pools are mostly separated by dispersal barriers, in the north species are mainly sorted by their environmental niches. Strikingly, most phylogenetic structuration of Carabus faunas occurred during the Pleistocene. Our results show how extreme recent historical events-such as Pleistocene climate cooling, rather than just deep-time evolutionary processes-can profoundly modify the composition and structure of geographical species pools.
Assuntos
Mudança Climática , Filogeografia , Animais , Biodiversidade , Evolução Biológica , Biota , Besouros , Ecossistema , Variação Genética , Camada de Gelo , FilogeniaRESUMO
Evolutionary history can explain species resemblance to a large extent. Thus, if closely related species share combinations of traits that modulate their response to environmental changes, then phylogeny could predict species sensitivity to novel stressors such as increased levels of deforestation. To test this hypothesis, we used 66,949 plots (25-m-radius) of the Spanish National Forest Inventory and modelled the relationships between local (plot-level) stem density of 61 Holarctic tree species and forest canopy cover measured at local and landscape scales (concentric circles centred on the plots with radiuses of 1.6, 3.2 and 6.4 km, respectively). Then, we used the output model equations to estimate the probability of occurrence of the species as a function of forest canopy cover (i.e. response to forest loss), and quantified the phylogenetic signal in their responses using a molecular phylogeny. Most species showed a lower probability of occurrence when forest canopy cover in the plots (local scale) was low. However, the probability of occurrence of many species increased when forest canopy cover decreased across landscape scales. We detected a strong phylogenetic signal in species response to forest loss at local and small landscape (1.6 km) scales. However, phylogenetic signal was weak and non-significant at intermediate (3.2 km) and large (6.4 km) landscape scales. Our results suggest that phylogenetic information could be used to prioritize forested areas for conservation, since evolutionary history may largely determine species response to forest loss. As such, phylogenetically diverse forests might ensure contrasted responses to deforestation, and thus less abrupt reductions in the abundances of the constituent species.