RESUMO
Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.
RESUMO
DNA methylation, an epigenetic modification regulating gene expression, is a promising target in cancer. In an effort to identify new non nucleosidic inhibitors of DNA methyltransferases, the enzymes responsible for DNA methylation, we carried out a high-throughput screening of 66,000 chemical compounds based on an enzymatic assay against catalytic DNMT3A. A family of propiophenone derivatives was identified. After chemical optimization and structure activity relationship studies, a new inhibitor (33) was obtained with an EC50 of 2.1 µM against DNMT3A. The mechanism of inhibition of the compound was investigated as it forms a reactive Michael acceptor group in situ. Thereby, the Michael acceptor 20 was identified. This compound was further characterized for its biological activity in cancer cells.
Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/síntese química , DNA Metiltransferase 3A , Epigenômica , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential.
Assuntos
Antineoplásicos/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Fermentação , Glicólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Sesquiterpenos/síntese química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacocinética , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Trichoderma/química , Trichoderma/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Three new anthranilic acid derivatives: N-(R)-3'-hydroxydocosanoylanthranilic acid (1), N-(R)-3'-hydroxytricosanoylanthranilic acid (2) and N-(R)-3'-hydroxytetracosanoylanthranilic acid (3), in addition to one knownanthranilic acid and six known flavonoids, were isolated from the ethyl acetate extract of Ononis pusilla L. The structures of the isolated compounds were assigned by spectroscopic methods, including 1D and 2D homo and heteronuclear NMR experiments, ESI-MS, chemical transformation and comparison with literature data.
Assuntos
Fabaceae/química , Extratos Vegetais/química , ortoaminobenzoatos/química , Espectroscopia de Ressonância Magnética , Estrutura MolecularRESUMO
Synthetic studies on hemicalide, a recently isolated marine natural product displaying highly potent antiproliferative activity and a unique mode of action, have highlighted a reliable Horner-Wadsworth-Emmons olefination to create the C6-C7 alkene and a remarkable efficient Suzuki-Miyaura coupling to form the C15-C16 bond, resulting in the development of a convergent approach toward the C1-C25 fragment.
Assuntos
Alcenos/química , Antineoplásicos/síntese química , Produtos Biológicos/síntese química , Policetídeos/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biologia Marinha , Estrutura Molecular , Policetídeos/química , Policetídeos/farmacologia , Poríferos/química , EstereoisomerismoRESUMO
Six dichapetalins named dichapetalins N-S were isolated from Dichapetalum mombuttense, Dichapetalum zenkeri and Dichapetalum leucosia. They were accompanied in the same plants by the known dichapetalins A, B, C, I, L and M. The structures of the compounds were elucidated by 1D and 2D NMR experiments and mass spectrometry. They all possessed the dammarane skeleton substituted at position C-3 by a C6-C2 unit forming a 2-phenylpyran moiety. All contained a lactone ring in the side chain except dichapetalins O, Q and R, in which this ring was replaced by a lactol. Dichapetalin Q and R were also the first dichapetalins bearing a tertiary methyl and a double bond instead of the cyclopropane of the dammaranes. All these compounds were assayed against cancer cell lines HCT116 and WM 266-4 and displayed cytotoxic and anti-proliferative activities in the 10(-6) to 10(-8)M range.