Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125579

RESUMO

The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.


Assuntos
Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida , Hipóxia , Isquemia , Retina , Tomografia de Coerência Óptica , Animais , Camundongos , Isquemia/metabolismo , Isquemia/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Retina/metabolismo , Retina/patologia , Hipóxia/metabolismo , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/etiologia , Masculino , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Tempo
2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686074

RESUMO

Despite the high probability of glaucoma-related blindness, its cause is not fully understood and there is no efficient therapeutic strategy for neuroprotection. Vascular factors have been suggested to play an important role in glaucoma development and progression. Previously, we have proven the neuroprotective effects of pituitary adenylate-cyclase-activating polypeptide (PACAP) eye drops in an inducible, microbeads model in rats that is able to reproduce many clinically relevant features of human glaucoma. In the present study, we examined the potential protective effects of PACAP1-38 on the retinal vasculature and the molecular changes in hypoxia. Ocular hypertension was induced by injection of microbeads into the anterior chamber, while control rats received PBS. PACAP dissolved in vehicle (1 µg/drop) or vehicle treatment was started one day after the injections for four weeks three times a day. Retinal degeneration was assessed with optical coherence tomography (OCT), and vascular and molecular changes were assessed by immunofluorescence labeling. HIF1-α and VEGF-A protein levels were measured by Western blot. OCT images proved severe retinal degeneration in the glaucomatous group, while PACAP1-38 eye drops had a retinoprotective effect. Vascular parameters were deteriorated and molecular analysis suggested hypoxic conditions in glaucoma. PACAP treatment exerted a positive effect against these alterations. In summary, PACAP could prevent the severe damage to the retina and its vasculature induced by ocular hypertension in a microbeads model.


Assuntos
Glaucoma , Hipertensão Ocular , Degeneração Retiniana , Animais , Ratos , Glaucoma/tratamento farmacológico , Hipóxia , Hipertensão Ocular/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Vasos Retinianos
3.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445531

RESUMO

Glaucoma is associated with increased intraocular pressure (IOP), causing the apoptosis of retinal ganglion cells (RGCs) and the loss of their axons leading to blindness. Pituitary adenylate cyclase activating polypeptide (PACAP) is neuroprotective in several neural injuries, including retinopathies. The aim of this study was to investigate the effects of PACAP1-38 eye drops in a model of glaucoma. IOP was elevated bilaterally by injections of microbeads to block the aqueous humor outflow. The control groups received the same volume of saline. Animals were treated with PACAP1-38 (1 µg/drop, 3 × 1 drop/day) or vehicle for 4 weeks starting one day after the injections. Retinal morphology by histology and optical coherence tomography, function by electroretinography, and IOP changes were analyzed. Animals were sacrificed 8 weeks after the injections. Microbeads injections induced a significant increase in the IOP, while PACAP1-38 treatment lowered it to normal levels (~10 mmHg). Significant retinal degeneration and functional impairment were observed in the microbead-injected group without PACAP1-38 treatment. In the microbeads + PACAP1-38 group, the retinal morphology and functionality were close to the normal values. In summary, our results show that PACAP1-38, given in form of eye drops, is neuroprotective in glaucoma, providing the basis for potential future therapeutic administration.


Assuntos
Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Microesferas , Fármacos Neuroprotetores/farmacologia , Soluções Oftálmicas/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Degeneração Retiniana/prevenção & controle , Animais , Glaucoma/etiologia , Glaucoma/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA