Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Circ Res ; 119(7): 865-79, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27461939

RESUMO

RATIONALE: Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE: Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS: C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS: A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.


Assuntos
Isoproterenol/administração & dosagem , Isoproterenol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Regeneração/efeitos dos fármacos , Animais , Catecolaminas/administração & dosagem , Catecolaminas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia
2.
J Mol Cell Cardiol ; 62: 122-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23743021

RESUMO

UNLABELLED: T-type Ca(2+) channels (TTCCs) are expressed in the fetal heart and then disappear from ventricular myocytes after birth. The hypothesis examined in this study was the α1G TTCCs' influence in myocyte maturation and their rapid withdrawal from the cell cycle after birth. METHODS: Cardiac myocytes were isolated from neonatal and adult wild type (WT), α1G-/- and α1G over expressing (α1GDT) mice. Bromodeoxyuridine (BrdU) uptake, myocyte nucleation, cell cycle analysis, and T-type Ca(2+) currents were measured. RESULTS: All myocytes were mono-nucleated at birth and 35% of WT myocytes expressed functional TTCCs. Very few neonatal myocytes had functional TTCCs in α1G-/- hearts. By the end of the first week after birth no WT or α1G-/- had functional TTCCs. During the first week after birth about 25% of WT myocytes were BrdU+ and became bi-nucleated. Significantly fewer α1G-/- myocytes became bi-nucleated and fewer of these myocytes were BrdU+. Neonatal α1G-/- myocytes were also smaller than WT. Adult WT and α1G-/- hearts were similar in size, but α1G-/- myocytes were smaller and a greater % were mono-nucleated. α1G over expressing hearts were smaller than WT but their myocytes were larger. CONCLUSIONS: The studies performed show that loss of functional TTCCs is associated with bi-nucleation and myocyte withdrawal from the cell cycle. Loss of α1G TTCCs slowed the transition from mono- to bi-nucleation and resulted in an adult heart with a greater number of small cardiac myocytes. These results suggest that TTCCs are involved in the regulation of myocyte size and the exit of myocytes from the cell cycle during the first week after birth.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Células Cultivadas , Eletrofisiologia , Citometria de Fluxo , Camundongos , Camundongos Knockout
3.
Proc Natl Acad Sci U S A ; 109(23): E1499-508, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22586092

RESUMO

New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells. We show that NFATc4 calcineurin-dependent activity is required selectively for survival of adult-born neurons in response to BDNF signaling. Indeed, cyclosporin A injection and stereotaxic delivery of the BDNF scavenger TrkB-Fc in the mouse dentate gyrus reduce the survival of hippocampal adult-born neurons in wild-type but not in NFATc4(-/-) mice and do not affect the net rate of neural precursor proliferation and their fate commitment. Furthermore, associated with the reduced survival of adult-born neurons, the absence of NFATc4 leads to selective defects in LTP and in the encoding of hippocampal-dependent spatial memories. Thus, our data demonstrate that NFATc4 is essential in the regulation of adult hippocampal neurogenesis and identify NFATc4 as a central player of BDNF-driven prosurvival signaling in hippocampal adult-born neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Hipocampo/citologia , Memória/fisiologia , Fatores de Transcrição NFATC/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Western Blotting , Técnicas de Cultura de Células , Condicionamento Psicológico/fisiologia , Primers do DNA/genética , Potenciais Evocados/fisiologia , Imuno-Histoquímica , Luciferases , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS One ; 6(7): e22217, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779394

RESUMO

Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1(-/-) mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1(fl/f) mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1(fl/fl) hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1(fl/fl) hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B(1), Plk-1, nMyc and p21(cip1). In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIδ, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Ciclina B1/genética , Ciclina B1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Quinase 1 Polo-Like
5.
Mol Cell Biol ; 30(18): 4379-90, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20647544

RESUMO

Calcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin. Here we uncover a novel regulatory pathway for cyclic AMP (cAMP) signaling by the phosphatase calcineurin which is also evolutionarily conserved in Caenorhabditis elegans. We found that calcineurin binds directly to and inhibits the proteosomal degradation of cAMP-hydrolyzing phosphodiesterase 4D (PDE4D). We show that ubiquitin conjugation and proteosomal degradation of PDE4D are controlled by a cullin 1-containing E(3) ubiquitin ligase complex upon dual phosphorylation by casein kinase 1 (CK1) and glycogen synthase kinase 3beta (GSK3beta) in a phosphodegron motif. Our findings identify a novel signaling process governing G-protein-coupled cAMP signal transduction-opposing actions of the phosphatase calcineurin and the CK1/GSK3beta protein kinases on the phosphodegron-dependent degradation of PDE4D. This novel signaling system also provides unique functional insights into the complications elicited by CsA in transplant patients.


Assuntos
Proteínas de Caenorhabditis elegans , Calcineurina/genética , Calcineurina/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Evolução Molecular , Sistemas do Segundo Mensageiro/fisiologia , Motivos de Aminoácidos , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores de Calcineurina , Linhagem Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Ciclosporina/metabolismo , Inibidores Enzimáticos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
6.
Nature ; 446(7134): 444-8, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17334357

RESUMO

Cardiac hypertrophy occurs as an adaptive response to increased workload to maintain cardiac function. However, prolonged cardiac hypertrophy causes heart failure, and its mechanisms are largely unknown. Here we show that cardiac angiogenesis is crucially involved in the adaptive mechanism of cardiac hypertrophy and that p53 accumulation is essential for the transition from cardiac hypertrophy to heart failure. Pressure overload initially promoted vascular growth in the heart by hypoxia-inducible factor-1 (Hif-1)-dependent induction of angiogenic factors, and inhibition of angiogenesis prevented the development of cardiac hypertrophy and induced systolic dysfunction. Sustained pressure overload induced an accumulation of p53 that inhibited Hif-1 activity and thereby impaired cardiac angiogenesis and systolic function. Conversely, promoting cardiac angiogenesis by introducing angiogenic factors or by inhibiting p53 accumulation developed hypertrophy further and restored cardiac dysfunction under chronic pressure overload. These results indicate that the anti-angiogenic property of p53 may have a crucial function in the transition from cardiac hypertrophy to heart failure.


Assuntos
Baixo Débito Cardíaco/fisiopatologia , Cardiomegalia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Aorta/patologia , Aorta/fisiopatologia , Pressão Sanguínea , Cardiomegalia/patologia , Circulação Coronária , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neovascularização Patológica , Proteína Supressora de Tumor p53/genética
7.
Proc Natl Acad Sci U S A ; 103(45): 16918-23, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17075052

RESUMO

Cardiac myosin binding protein C (cMyBP-C) has three phosphorylatable serines at its N terminus (Ser-273, Ser-282, and Ser-302), and the residues' phosphorylation states may alter thick filament structure and function. To examine the effects of cMyBP-C phosphorylation, we generated transgenic mice with cardiac-specific expression of a cMyBP-C in which the three phosphorylation sites were mutated to aspartic acid, mimicking constitutive phosphorylation (cMyBP-C(AllP+)). The allele was bred into a cMyBP-C null background (cMyBP-C((t/t))) to ensure the absence of endogenous dephosphorylated cMyBP-C. cMyBP-C(AllP+) was incorporated normally into the cardiac sarcomere and restored normal cardiac function in the null background. However, subtle changes in sarcomere ultrastructure, characterized by increased distances between the thick filaments, indicated that phosphomimetic cMyBP-C affects thick-thin filament relationships, and yeast two-hybrid data and pull-down studies both showed that charged residues in these positions effectively prevented interaction with the myosin heavy chain. Confirming the physiological relevance of these data, the cMyBP-C(AllP+:(t/t)) hearts were resistant to ischemia-reperfusion injury. These data demonstrate that cMyBP-C phosphorylation functions in maintaining thick filament spacing and structure and can help protect the myocardium from ischemic injury.


Assuntos
Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Miosinas/metabolismo , Fenótipo , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/metabolismo , Sarcômeros/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA