Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Eur J Dent ; 17(4): 1097-1105, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36696917

RESUMO

OBJECTIVE: The aim of this study was to investigate by finite element method analysis the behaviour of a three-implant mandible Toronto framework made by three different materials, with two abutment systems and two loading conditions. MATERIALS AND METHODS: Three implants were virtually inserted in a mandible model in positions 3.6, 4.1, and 4.6. Three prosthetic framework bars with the same design and dimension (4.8 × 5.5 mm) were projected. The variables introduced in the computer model were the framework materials (glass fiber reinforced resin, Co-Cr, TiAl6V4), the abutment systems (Multi-Unit-Abutment [MUA]/OT-Bridge), and the loading conditions (500 N vertical load on all the framework area and 400 N on a 7-mm distal cantilever). The computer was programmed with physical properties of the materials as derived from the literature. Maximum tension and deformation values for each variable were registered at framework, screws, and abutment level and then compared. RESULTS: Metal frameworks Cr-Co and TiAl6V4 resulted in lower deformation than glass fiber-reinforced resin frameworks while presenting higher tension values. The OT-Bridge exhibited lower maximum tension and deformation values than the MUA system. The first loading condition reached higher tension and deformation values than the second and it resulted in more uniformly distributed load on all the framework area, especially with the OT-Bridge system. CONCLUSION: More rigid materials and OT-Bridge system decrease the deformation on the prosthetic components. Tension stresses are more uniformly distributed with glass fiber-reinforced resin, in the OT-Bridge system and avoiding cantilever loading.

2.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431449

RESUMO

In full-arch implant rehabilitations, when the anterior screw abutment channel compromises the aesthetic of the patient, the OT-Bridge system used with its Seeger rings may provide the necessary retention of the prosthesis. However, no studies have evaluated the forces generated at the Seeger level during loading. This Finite Element Analysis aims to investigate the mechanical behavior of Seeger rings in a mandibular model with four implants and an OT-Bridge system, used without one or two anterior prosthetic screws. A 400 N unilateral load was virtually applied on a 7 mm distal cantilever. Two different variables were considered: the constraint conditions using two or three screws instead of four and the three different framework materials (fiberglass reinforced resin, cobalt-chrome, TiAl6V4). The FEA analysis exhibited tensile and compressive forces on the Seeger closest to the loading point. With the resin framework, a tension force on abutment 3.3 generates a displacement from 5 to 10 times greater than that respectively expressed in metal framework materials. In a full-arch rehabilitation with four implants, the case with three prosthetic screws seems to be a safer and more predictable configuration instead of two. Considering the stress value exhibited and the mechanical properties of the Seeger, the presence of only two prosthetic screws could lead to permanent deformation of the Seeger in the screwless abutment closest to the loading point.

3.
Waste Manag ; 153: 229-239, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126397

RESUMO

Rigid semi-Interpenetrated Polymer Network (semi-IPN) foam based on poly(vinyl chloride) (PVC) and crosslinked polyurea/isocyanurate are complex materials that at present are not recyclable. They are used in many fields, including wind blade cores. In this work we studied the depolymerization of the crosslinked portion of the foam under glycolysis conditions for the separation and reuse of the individual components. Reaction products were characterized by FT-IR, NMR, solvent solubility, DSC, elemental analysis, titration of amine and hydroxyl groups and rheology measurements. Triisocyanurates and urea moieties were synthesized and used as model compounds. Glycolysis conditions were optimized to maximize depolymerization while minimizing PVC degradation. The parameters studied were reaction time (8 min to 3 h), temperature (155 to 200 °C), catalyst (potassium acetate or dibutyl tin dilaurate (DBTL)), glycol (ethylene glycol, 1,4 butanediol, diethylene glycol, dipropylene glycol, polyethylene glycol), as well as the effect of PVC thermal stabilizers such as hindered phenols and organo-phosphites. The results showed that the optimal reaction condition for foam glycolysis is 165-175 °C for 20-30 min, using DBTL as catalyst and including thermal stabilizers. No drastic difference was noticed by the kind of glycol used, except for PEG that led to greater PVC degradation. The greatest part of the crosslinked portion (≥90 %) was depolymerized and the result were mainly hydroxyl- and in minor amount amine- terminated oligomers. The recovered PVC (purity roughly 90 %) had a low degree of degradation and a viscosity suitable for its processing as thermoplastic material, i.e. by injection moulding.


Assuntos
Glicólise , Cloreto de Polivinila , Cloreto de Vinil , Aminas , Butileno Glicóis , Etilenoglicóis , Fenóis , Polietilenoglicóis/química , Polímeros/química , Cloreto de Polivinila/química , Acetato de Potássio , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Estanho , Ureia
4.
Bioengineering (Basel) ; 9(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36004874

RESUMO

We aimed to investigate the stress relaxation properties of five different thermoplastic aligner materials subjected to 14 days of constant deflection. Five different thermoplastic aligner materials were selected, whose elastic properties varied: F22 Evoflex, F22 Aligner, Durasoft, Erkoloc-Pro and Duran. The static properties of these materials-in particular, stiffness, stress-strain curve and yield stress-were measured with a three-point bending test. For all the tests that were performed, a minimum of three samples per material were tested. The yield load, yield strength, deformation and particularly the stiffness of each material were found to be similar in the single-layer samples, while the double-layer samples showed far lower stiffness values and were similar one to another. F22 Evoflex and Erkoloc-Pro maintained the highest percentages of stress, 39.2% and 36.9%, respectively, during the 15-day period. Duran and Durasoft obtained the lowest final stress values, 0.5 MPa and 0.4 MPa, respectively, and the lowest percentage of normalized stress, 4.6% and 3.9%, respectively, during the 15-day period. All the materials that we tested showed a rapidity of stress decay during the first few hours of application, before reaching a plateau phase. The F22 Evoflex material showed the greatest level of final stress, with relatively constant stress release during the entire 15-day period. Further research after in vivo aging is necessary in order to study the real aligners' behavior during orthodontic treatment.

5.
J Orofac Orthop ; 83(1): 13-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34185103

RESUMO

INTRODUCTION: The aim of this study was to determine and compare the play and torque expression of self-ligating and conventionally ligated lingual brackets, with square and rectangular slots, when engaged with archwires of different size, cross section and material. METHODS: Passive play and torque expression of 3 types of archwires and 5 types of brackets from four different manufacturers were measured and compared using a dynamometer. Each archwire was tested five times in each bracket; passive play was compared to ideal values, while torque expression was tested at 5, 10 and 20 Nmm as clinically efficacious values. RESULTS: Regarding full thickness stainless steel archwires, the lowest passive play was found in STb brackets (2.66 ± 0.89°, Ormco, Glendora, CA, USA), which was statistically significantly lower than for ALIAS brackets (4.44 ± 0.75°, Ormco), In-Ovation L brackets (6.14 ± 3.22°, Dentsply GAC, Bohemia, NY, USA), Harmony brackets (7.76 ± 2.94°, American Orthodontics, Sheboygan, WI, USA) and eBrace brackets (9.46 ± 3.94°, Riton Biomaterial, Guangzhou, China). Increasing the torsional load to the greatest torsional load clinically applicable, there were no statistically significant differences between STb, ALIAS, In-Ovation L and Harmony brackets. CONCLUSIONS: STb and ALIAS brackets generated the lowest passive play; STb and In-Ovation L brackets showed the lowest angle of play at the greatest torque expression. These measurements allow to understand the accuracy of lingual systems and at the same time the amount of overcorrections to be applied in the setup in order to obtain high quality orthodontic treatments.


Assuntos
Braquetes Ortodônticos , Fios Ortodônticos , Análise do Estresse Dentário , Teste de Materiais , Desenho de Aparelho Ortodôntico , Torque
6.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201773

RESUMO

Wood polymer composites or WPCs are increasingly used as substitutes for natural wood in outdoor applications due to their better environmental sustainability and the consequent reduction in carbon footprint. In this paper, the presence of an elastomer used as a toughening agent (Santoprene by Exxon Mobil) in a polypropylene-based WPC containing 50 wt % wood flour was investigated in terms of its tribological behavior by dry sliding wear tests. These were performed after two environmental pre-conditioning treatments, i.e., drying and water soaking. The ball-on-disk configuration under a constant load was chosen along two sliding distances. Dynamic mechanical thermal analyses were used to reveal the effect of the toughening agent on the storage modulus and damping factor of the composites. Results in terms of weight loss measurement and coefficient of friction were obtained, together with surface morphology analysis of the worn surfaces at the scanning electron microscope and 3D profilometer. An abrasive wear mechanism was identified, and it was shown that the toughening agent improved wear resistance after both pre-treatments. This beneficial effect can be explained by the increase in strain at break of the WPC containing the elastomer. On the other hand, the water soaking pre-treatment produced severe damage, and the loss of material cannot be completely compensated by the presence of the toughening agent.

7.
Int Orthod ; 18(4): 809-819, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33004287

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the biomechanical properties of miniscrews of 5 different lengths, 2 different diameters, and different combinations of insertion used for palatal skeletal anchorage. MATERIALS AND METHODS: Twenty-four different combinations of a total of 120 miniscrews of two different diameters (2.0mm and 2.3mm) and five different lengths (9mm, 11mm, 13mm and 15mm) were tested at different angles of insertion (90° and 45°) and distances from a synthetic bone block (3mm, 5mm, 7mm). Samples were fixed in an Instron Universal Testing Machine and a load was applied in single cantilever mode to the neck of each miniscrew. The stiffness and maximum load before permanent deformation were recorded. Model-based recursive partitioning testing (CART) was used to evaluate differences between groups. RESULTS: Significantly higher forces were necessary to deform miniscrews of diameter 2.3mm than those of 2.0mm, those inserted at an angle of 45° with respect to 90°, and at smaller distances between the miniscrew neck and block; in addition, the maximum load and stiffness increased with increasing screw length. CONCLUSION: This in vitro experimental study showed strong correlations between deformation load and miniscrew geometry, insertion angle and distance from the synthetic block, results that should be considered when planning miniscrew insertion in order to reduce the risk of unwanted fracture.


Assuntos
Fenômenos Biomecânicos , Parafusos Ósseos , Procedimentos de Ancoragem Ortodôntica/instrumentação , Palato , Ligas Dentárias , Implantes Dentários , Humanos , Técnicas In Vitro , Desenho de Aparelho Ortodôntico , Titânio
8.
Polymers (Basel) ; 12(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050062

RESUMO

Despite the fact that wood polymer composites are interesting materials for many different reasons, they are quite difficult to shape through standard polymer processing techniques, such as extrusion or injection molding. Rheological characterization can be very helpful for understanding the role played by the many variables that are involved in manufacturing and to achieve a good quality final product through an optimized mix of formulation and processing parameters. The main methods that have been used for the rheological characterization of these materials are capillary and parallel plate rheometry. Both are very useful: rotational rheometry is particularly convenient to investigate the compounding phase and obtain structural information on the material, while capillary viscometry is well suited to understand final manufacturing. The results available in the literature at the moment are indeed very interesting and are mostly aimed at investigating the influence of the material formulation, the additives in particular, on the structural, mechanical, and morphological properties of the composite: despite a good number of papers, though, it is difficult to draw general conclusions, as many issues are still debated. The purpose of this article was to overview the state of the art and to highlight the issues that deserve further investigation.

9.
Polymers (Basel) ; 12(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443681

RESUMO

The use of wood fibers is a deeply investigated topic in current scientific research and one of their most common applications is as filler for thermoplastic polymers. The resulting material is a biocomposite, known as a Wood Polymer Composite (WPC). For increasing the sustainability and reducing the cost, it is convenient to increase the wood fiber content as much as possible, so that the polymeric fraction within the composite is thereby reduced. On the other hand, this is often thwarted by a sharp decrease in toughness and processability-a disadvantage that could be overcome by compounding the material with a toughening agent. This work deals with the mechanical properties in tension and impact of polypropylene filled with 50 wt.% wood flour, toughened with different amounts (0%, 10%, and 20%) of a polypropylene-based thermoplastic vulcanizate (TPV). Such properties are also investigated as a function of extrusion processing variables, such as the feeding mode (i.e., starve vs. flood feeding) and screw speed. It is found that the mechanical properties do depend on the processing conditions: the best properties are obtained either in starve feeding conditions, or in flood feeding conditions, but at a low screw speed. The toughening effect of TPV is significant when its content reaches 20 wt.%. For this percentage, the processing conditions are less relevant in governing the final properties of the composites in terms of the stiffness and strength.

10.
Polymers (Basel) ; 11(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261607

RESUMO

As biodegradable thermoplastics are more and more penetrating the market of filaments for fused deposition modeling (FDM) 3D printing, fillers in the form of natural fibers are convenient: They have the clear advantage of reducing cost, yet retaining the filament biodegradability characteristics. In plastics that are processed through standard techniques (e.g., extrusion or injection molding), natural fibers have a mild reinforcing function, improving stiffness and strength, it is thus interesting to evaluate whether the same holds true also in the case of FDM produced components. The results analyzed in this review show that the mechanical properties of the most common materials, i.e., acrylonitrile-butadiene-styrene (ABS) and PLA, do not benefit from biofillers, while other less widely used polymers, such as the polyolefins, are found to become more performant. Much research has been devoted to studying the effect of additive formulation and processing parameters on the mechanical properties of biofilled 3D printed specimens. The results look promising due to the relevant number of articles published in this field in the last few years. This notwithstanding, not all aspects have been explored and more could potentially be obtained through modifications of the usual FDM techniques and the devices that have been used so far.

11.
Prog Orthod ; 20(1): 1, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30613836

RESUMO

OBJECTIVES: The aim of this study is to investigate and compare the characteristics of as received and retrieved NiTi archwires at a constant temperature by plotting their load/deflection graphs and quantifying three parameters describing the discharge plateau phase. MATERIALS AND METHODS: Two hundred four NiTi archwires, traditional and heat-activated, of various cross sections, were obtained from 5 different manufacturers. Specimens prepared from the selected wires were subjected to a three-point bending test where 92 were retrieved through an in vivo retrieval protocol (crowding group C1 and group C2), 56 went through an in vitro retrieval protocol, and 56 were as received. The in vitro retrieval protocol was performed by a gear motor connected to a stainless steel support that performed fatigue cycles to the bent wires in artificial saliva. The load/deflection graphs of as received and retrieved wires were described through three parameters and the results were analyzed with classification and regression trees (CART) and analysis of variance (ANOVA). RESULTS: Statistically significant differences between as received and retrieved wires were found only for the parameter plateau slope which represents the constancy of force expressed by the wire. CONCLUSIONS: The aging of NiTi archwires influences the force constancy expressed. The behavior of the wires changes depending on the size, brand, and type of retrieval protocol. In terms of performance, the poorest is represented by all wires retrieved in vitro and in vivo group C2 (moderate to severe crowding).


Assuntos
Ligas , Fios Ortodônticos , Adolescente , Adulto , Análise de Variância , Criança , Arco Dental , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Orofac Orthop ; 80(2): 57-67, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610250

RESUMO

AIMS: Mechanical properties along the length of latest generation "multi-force" archwires were measured and compare with commercially available thermally activated and non-thermally activated nickel-titanium (NiTi) archwires. MATERIALS AND METHODS: A modified deflection test was used to produce load/deflection curves for different positions along the lengths of a sample of 114 NiTi archwires composed by thermal NiTi, non-thermal NiTi, two types of multi-force NiTi and one type of multi-force copper archwires of various cross-sections (0.016â€¯× 0.016 inch, 0.016â€¯× 0.022 inch, 0.018â€¯× 0.025 inch and 0.019â€¯× 0.025 inch). The length, slope and mean force expressed were calculated from the resulting unloading plateaus, enabling comparison between types of archwire at different points along their lengths. RESULTS: Among conventional thermal, conventional nonthermal and multiforce archwires, all parameters investigated were statistically different, whereby the performance of the latter was superior. Multi-force archwires displayed 27% and 31% lighter mean forces in the upper and lower arches, respectively, in addition to 62% and 40% reductions in unloading plateau slope and length, respectively, as compared to conventional CuNiTi wires. Comparison of the different types of multi-force wires tested revealed statistically significant differences in the three parameters, depending on the testing position but irrespective of their cross-section. CONCLUSIONS: Although conventional archwires display identical behaviour along their lengths, as advertised the multi-force archwires do indeed exert a progressive force which differs between anterior, medial and posterior sections. The multi-force wires provide lighter, more prolonged and constant forces than conventional wires without cross-section-dependent variation.


Assuntos
Ligas , Fios Ortodônticos , Análise do Estresse Dentário , Estresse Mecânico , Suporte de Carga
13.
Dent J (Basel) ; 6(3)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041411

RESUMO

To our knowledge there is no data about the mechanical performance of indirect restoration adhesively cemented on teeth without an adequate build-up to provide the correct geometrical configuration. The aim of this study was to compare the fracture strength of human teeth restored with lithium disilicate onlays, with and without fiber post build-up. METHODS: Twenty human mandibular molars were horizontally sectioned and divided into two groups (n = 10). No treatment was applied in group A. Teeth in group B were endodontically treated, built-up using fiber post and composite core and prepared with a circumferential chamfer providing a 1 mm circumferential ferrule. Lithium disilicate onlays were pressed and luted on teeth using dual-curing luting composite. Teeth were tested under static load. Failures were classified as restorable or not restorable. Failure loads were analyzed with one-way analysis of variance. Failure modes were compared using Pearson's Chi-square tests. RESULTS: The mean fracture loads were 1383.5 N for group A and 1286.3 N for group B. No difference was found (p = 0.6). Ninety per cent of fractures were classified as not restorable in both groups, with no difference (p = 0.8). CONCLUSIONS: For teeth restored with adhesive procedures and lithium disilicate onlays, the presence of build-up with fiber post to provide retention and resistance form does not influence the fracture strength.

14.
Angle Orthod ; 87(1): 11-18, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27314603

RESUMO

OBJECTIVE: To investigate the stress release properties of four thermoplastic materials used to make orthodontic aligners when subjected to 24 consecutive hours of deflection. MATERIALS AND METHODS: Four types of aligner materials (two single and two double layered) were selected. After initial yield strength testing to characterize the materials, each sample was subjected to a constant load for 24 hours in a moist, temperature-regulated environment, and the stress release over time was measured. The test was performed three times on each type of material. RESULTS: All polymers analyzed released a significant amount of stress during the 24-hour period. Stress release was greater during the first 8 hours, reaching a plateau that generally remained constant. The single-layer materials, F22 Aligner polyurethane (Sweden & Martina, Due Carrare, Padova, Italy) and Duran polyethylene terephthalate glycol-modified (SCHEU, Iserlohn, Germany), exhibited the greatest values for both absolute stress and stress decay speed. The double-layer materials, Erkoloc-Pro (Erkodent, Pfalzgrafenweiler, Germany) and Durasoft (SCHEU), exhibited very constant stress release, but at absolute values up to four times lower than the single-layer samples tested. CONCLUSIONS: Orthodontic aligner performance is strongly influenced by the material of their construction. Stress release, which may exceed 50% of the initial stress value in the early hours of wear, may cause significant changes in the behavior of the polymers at 24 hours from the application of orthodontic loads, which may influence programmed tooth movement.


Assuntos
Análise do Estresse Dentário , Teste de Materiais , Desenho de Aparelho Ortodôntico/métodos , Técnicas de Movimentação Dentária/instrumentação , Dureza , Humanos , Plásticos/química , Polietilenoglicóis , Polietilenotereftalatos , Polímeros , Poliuretanos , Temperatura , Fatores de Tempo
15.
Prog Orthod ; 17(1): 36, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747528

RESUMO

BACKGROUND: The aim of this study is to evaluate the mechanical properties of the screws used for rapid expansion of the upper jaw. METHODS: Ten types of expansion screw were assessed, seven with four arms: Lancer Philosophy 1, Dentaurum Hyrax Click Medium, Forestadent Anatomic Expander type "S", Forestadent Anatomic Expander type "S" for narrow palates, Forestadent Memory, Leone A 2620-10 with telescopic guide, and Leone A 0630-10 with orthogonal arms; and three with two arms: Dentaurum Variety S.P., Target Baby REP Veltri, and Leone A 362113. A test expander with the mean dimensions taken from measurements on a sample of 100 expanders was constructed for each screw. The test expanders were connected to the supports of an Instron 4467 (Instron Corp., USA) mechanical testing machine equipped with a 500 N load cell, and the compression force exerted after each activation was measured. The mean forces expressed by the two- and four-arm expanders were then compared. RESULTS: After five activations, the forces expressed by the two-arm devices were double than those expressed by the four-arm devices on average (224 ± 59.9 N vs. 103 ± 32.9 N), and such values remained high after subsequent activations. CONCLUSIONS: The expanders tested demonstrated stiffness characteristics compatible with opening of the palatine sutures in pre-adolescent patients. The stiffness of such devices can be further increased during the construction phase.


Assuntos
Análise do Estresse Dentário , Teste de Materiais , Fenômenos Mecânicos , Desenho de Aparelho Ortodôntico/classificação , Desenho de Aparelho Ortodôntico/instrumentação , Técnica de Expansão Palatina/classificação , Técnica de Expansão Palatina/instrumentação , Adolescente , Criança , Suturas Cranianas , Ligas Dentárias , Feminino , Humanos , Masculino , Maxila , Modelos Biológicos , Procedimentos de Ancoragem Ortodôntica/instrumentação , Palato , Palato Duro/crescimento & desenvolvimento , Aço Inoxidável , Estresse Mecânico
16.
Prog Orthod ; 17(1): 27, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27593408

RESUMO

BACKGROUND: The aim of this study is to investigate the relative stiffness of straight and mushroom lingual archwires of different diameters, cross sections and alloys, plotting their load/deflection graphs and using a modified three-point bending test. METHODS: Fujita's mushroom archwires and straight lingual archwires of different diameters, cross sections and alloys were derived by a virtual set-up of an equal malocclusion and were cut at their straight distal portion. These distal portions were tested using a modified three-point bending test by an Instron 4467 dynamometer and the forces, were exerted at 1-mm deflection and were compared on each resulting load/deflection curve by means of ANOVA (p < 0.05). RESULTS: All upper lingual mushroom wires exerted significantly lower forces than the straight wire. Lower mushroom archwires were stiffer than their upper counterparts, which were longer and featured inset bends. In the lower arch, similar levels of forces were recorded for the two types of wire. Load-deflection curves were higher for the straight wires, and stiffness increased proportionally with their diameter. CONCLUSIONS: The stiffness of an archwire is a function of its diameter, length and the alloy it is made from. In lower lingual wires, there is little difference in stiffness between mushroom and straight wires, but in upper wires, the straight version is considerably stiffer. The greater bearing effect exhibited by the straight wire in the working and finishing phases makes it less susceptible to bowing effect and therefore preferable for sliding mechanics during en masse retraction, particularly in the upper arch.


Assuntos
Análise do Estresse Dentário , Teste de Materiais , Fios Ortodônticos/classificação , Ligas Dentárias , Elasticidade , Análise de Elementos Finitos , Humanos , Braquetes Ortodônticos , Aço Inoxidável , Estresse Mecânico
17.
Int Orthod ; 14(1): 1-14, 2016 Mar.
Artigo em Inglês, Francês | MEDLINE | ID: mdl-26826971

RESUMO

AIMS: To determine and compare the relative stiffness of a large selection of commonly-used square and rectangular steel, super-tempered steel, NiTi, and TMA orthodontic archwires of various cross-sections, in order to provide the clinician with a useful, easy-to-consult guide to archwire sequence selection. MATERIALS AND METHODS: Twenty-four archwires of different cross-section shape, size and material were selected. Each type was subjected to a modified three-point bending test, performed in triplicate using an Instron 4467 dynamometer. Each sample was deflected by 1mm, and the corresponding load recorded. The relative stiffness of each archwire sample was calculated, and samples were compared by material and by cross-section. RESULTS: A considerable difference in resistance to deflection was revealed between all the tested archwires. As expected, the resistance to deflection of archwires of the same cross-section was found to increase with increasing stiffness of their construction material. Specifically, steel archwires can be as much as 8 times stiffer than NiTi archwires of the same shape and cross-section, and super-tempered steel archwires are invariably stiffer than traditional steel versions. Marked differences in resistance to deflection were also found between NiTi archwires made of the same material but with different shape characteristics. CONCLUSIONS: In archwires of the same cross-section, steel is always stiffer than TMA and NiTi, and super-tempered steel is always stiffer than conventional steels. In archwires of the same material, the stiffness increases with the cross-section, in particular with its height.


Assuntos
Fios Ortodônticos , Ligas Dentárias , Humanos , Teste de Materiais , Níquel , Titânio
18.
Materials (Basel) ; 8(4): 1604-1611, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28788020

RESUMO

No studies are available that evaluate the retention of disilicate crowns according to different cementation procedures. The purpose of this study was to measure the retention of lithium disilicate crowns cemented using two different cementation systems. Twenty extracted mandibular premolars were prepared. Anatomic crowns were waxed and hot pressed using lithium disilicate ceramic. Teeth were divided into two groups (n = 10): (1) self-curing luting composite and (2) glass-ionomer cement (GIC). After cementation, the crowns were embedded in acrylic resin block with a screw base. Each specimen was pulled along the path of insertion in Universal Testing Machine. Failure load in Newtons (N) and failure mode were recorded for each specimen. Failure mode was classified as decementation or fracture. Failure load data were analyzed using one-way analysis of variance (ANOVA). Failure modes were compared using Pearson's Chi-square test. Mean failure load was 306.6(±193.8) N for composite group and 94.7(±48.2) N for GIC group (p = 0.004). Disilicate crown cemented with luting composite most often failed by fracture; otherwise, crown cemented with glass-ionomer cement most often failed by decementation (p = 0.02). Disilicate full crown cemented with luting composite showed higher failure load compared with conventional cementation with glass-ionomer cement.

19.
Angle Orthod ; 85(5): 848-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25405384

RESUMO

OBJECTIVE: To evaluate the degree to which the height, width, and cross-section of rectangular and square orthodontic archwires affect the play between the archwires and the bracket slot. MATERIALS AND METHODS: The stated measurements (height and width) of 43 archwires from six different manufacturers were compared with real values obtained using a digital gauge. The curvature (radius) of the edge bevels was also measured to calculate the play within the slot, and this measurement was compared with the ideal value. RESULTS: The real height and width of the archwires differed from those stated by the manufacturers, falling within the range -6.47% and +5.10%. The curvature of each bevel on each archwire cross-section was shown to differ, and consequently increased the real play between the archwire and slot with respect to the ideal to different degrees. CONCLUSIONS: The archwire-slot play was greater than the ideal for each archwire considered, inevitably leading to a loss of information within the system.


Assuntos
Análise do Estresse Dentário/instrumentação , Desenho de Aparelho Ortodôntico/métodos , Fios Ortodônticos , Ligas Dentárias , Humanos , Desenho de Aparelho Ortodôntico/instrumentação , Braquetes Ortodônticos
20.
J Biomech ; 47(16): 3825-9, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25468297

RESUMO

This study aimed at investigating the effects of titanium implants and different configurations of full-arch prostheses on the biomechanics of edentulous mandibles. Reverse engineered, composite, anisotropic, edentulous mandibles made of a poly(methylmethacrylate) core and a glass fibre reinforced outer shell were rapid prototyped and instrumented with strain gauges. Brånemark implants RP platforms in conjunction with titanium Procera one-piece or two-piece bridges were used to simulate oral rehabilitations. A lateral load through the gonion regions was used to test the biomechanical effects of the rehabilitations. In addition, strains due to misfit of the one-piece titanium bridge were compared to those produced by one-piece cast gold bridges. Milled titanium bridges had a better fit than cast gold bridges. The stress distribution in mandibular bone rehabilitated with a one-piece bridge was more perturbed than that observed with a two-piece bridge. In particular the former induced a stress concentration and stress shielding in the molar and symphysis regions, while for the latter design these stresses were strongly reduced. In conclusion, prosthetic frameworks changed the biomechanics of the mandible as a result of both their design and manufacturing technology.


Assuntos
Bioengenharia , Prótese Dentária Fixada por Implante , Mandíbula/fisiologia , Porcelana Dentária , Planejamento de Prótese Dentária , Ouro , Humanos , Ligas Metalo-Cerâmicas , Impressão Tridimensional , Próteses e Implantes , Estresse Mecânico , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA