Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Curr Alzheimer Res ; 20(8): 523-525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921166
2.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216271

RESUMO

Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.


Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Microfluídica/métodos , Pessoa de Meia-Idade , Neuroimagem/métodos , Testes Neuropsicológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
3.
Mol Biol Rep ; 49(2): 1089-1101, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797489

RESUMO

BACKGROUND: Emerging evidence suggest that DNA-PK complex plays a role in the cellular response to oxidative stress, in addition to its function of double strand break (DSB) repair. In this study we evaluated whether DNA-PK participates in oxidative stress response and whether this role is independent of its function in DNA repair. METHODS AND RESULTS: We used a model of H2O2-induced DNA damage in PC12 cells (rat pheochromocytoma), a well-known neuronal tumor cell line. We found that H2O2 treatment of PC12 cells induces an increase in DNA-PK protein complex levels, along with an elevation of DNA damage, measured both by the formation of γΗ2ΑX foci, detected by immunofluorescence, and γH2AX levels detected by western blot analysis. After 24 h of cell recovery, γΗ2ΑX foci are repaired both in the absence and presence of DNA-PK kinase inhibitor NU7026, while an increase of apoptotic cells is observed when DNA-PK activity is inhibited, as revealed by counting pycnotic nuclei and confirmed by FACS analysis. Our results suggest a role of DNA-PK as an anti-apoptotic factor in proliferating PC12 cells under oxidative stress conditions. The anti-apoptotic role of DNA-PK is associated with AKT phosphorylation in Ser473. On the contrary, in differentiated PC12 cells, were the main pathway to repair DSBs is DNA-PK-mediated, the inhibition of DNA-PK activity causes an accumulation of DNA damage. CONCLUSIONS: Taken together, our results show that DNA-PK can protect cells from oxidative stress induced-apoptosis independently from its function of DSB repair enzyme.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Cromonas , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/genética , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Morfolinas , Proteínas Nucleares/genética , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
4.
J Exp Clin Cancer Res ; 40(1): 228, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253243

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). METHODS: In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. RESULTS: Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. CONCLUSIONS: Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Hidrazinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hidrazinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo , Espécies Reativas de Oxigênio
5.
Neurochem Res ; 46(6): 1330-1336, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33666839

RESUMO

Translating successful preclinical research in neurodegenerative diseases into clinical practice has been difficult. The preclinical disease models used for testing new drugs not always appear predictive of the effects of the agents in the human disease state. Human induced pluripotent stem cells, obtained by reprogramming of adult somatic cells, represent a powerful system to study the molecular mechanisms of the disease onset and pathogenesis. However, these cells require a long time to differentiate into functional neural cells and the resetting of epigenetic information during reprogramming, might miss the information imparted by age. On the contrary, the direct conversion of somatic cells to neuronal cells is much faster and more efficient, it is safer for cell therapy and allows to preserve the signatures of donors' age. Direct reprogramming can be induced by lineage-specific transcription factors or chemical cocktails and represents a powerful tool for modeling neurological diseases and for regenerative medicine. In this Commentary we present and discuss strength and weakness of several strategies for the direct cellular reprogramming from somatic cells to generate human brain cells which maintain age-related features. In particular, we describe and discuss chemical strategy for cellular reprogramming as it represents a valuable tool for many applications such as aged brain modeling, drug screening and personalized medicine.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Neurônios/metabolismo , Animais , Encéfalo/citologia , Técnicas de Transferência de Genes , Humanos , Fatores de Transcrição/metabolismo , Transgenes/genética
6.
Molecules ; 26(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379366

RESUMO

(1) Background: Nicotine is implicated in the SARS-COV-2 infection through activation of the α7-nAChR and over-expression of ACE2. Our objective was to clarify the role of nicotine in SARS-CoV-2 infection exploring its molecular and cellular activity. (2) Methods: HBEpC or si-mRNA-α7-HBEpC were treated for 1 h, 48 h or continuously with 10-7 M nicotine, a concentration mimicking human exposure to a cigarette. Cell viability and proliferation were evaluated by trypan blue dye exclusion and cell counting, migration by cell migration assay, senescence by SA-ß-Gal activity, and anchorage-independent growth by cloning in soft agar. Expression of Ki67, p53/phospho-p53, VEGF, EGFR/pEGFR, phospho-p38, intracellular Ca2+, ATP and EMT were evaluated by ELISA and/or Western blotting. (3) Results: nicotine induced through α7-nAChR (i) increase in cell viability, (ii) cell proliferation, (iii) Ki67 over-expression, (iv) phospho-p38 up-regulation, (v) EGFR/pEGFR over-expression, (vi) increase in basal Ca2+ concentration, (vii) reduction of ATP production, (viii) decreased level of p53/phospho-p53, (ix) delayed senescence, (x) VEGF increase, (xi) EMT and consequent (xii) enhanced migration, and (xiii) ability to grow independently of the substrate. (4) Conclusions: Based on our results and on evidence showing that nicotine potentiates viral infection, it is likely that nicotine is involved in SARS-CoV-2 infection and severity.


Assuntos
COVID-19/patologia , Células Epiteliais/efeitos dos fármacos , Nicotina/efeitos adversos , Sistema Respiratório/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Receptores Nicotínicos/metabolismo , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290386

RESUMO

Tumor hypoxic microenvironment causes hypoxia inducible factor 1 alpha (HIF-1α) activation and necrosis with alarmins release. Importantly, HIF-1α also controls the expression of alarmin receptors in tumor cells that can bind to and be activated by alarmins. Human tumor tissues possess 1-2% of cancer stem cells (CSCs) residing in hypoxic niches and responsible for the metastatic potential of tumors. Our hypothesis is that hypoxic CSCs express alarmin receptors that can bind alarmins released during necrosis, an event favoring CSCs migration. To investigate this aspect, glioblastoma stem-like cell (GSC) lines were kept under hypoxia to determine the expression of hypoxic markers as well as receptor for advanced glycation end products (RAGE). The presence of necrotic extracts increased migration, invasion and cellular adhesion. Importantly, HIF-1α inhibition by digoxin or acriflavine prevented the response of GSCs to hypoxia alone or plus necrotic extracts. In vivo, GSCs injected in one brain hemisphere of NOD/SCID mice were induced to migrate to the other one in which a necrotic extract was previously injected. In conclusion, our results show that hypoxia is important not only for GSCs maintenance but also for guiding their response to external necrosis. Inhibition of hypoxic pathway may therefore represent a target for preventing brain invasion by glioblastoma stem cells (GSCs).


Assuntos
Glioblastoma/etiologia , Glioblastoma/metabolismo , Hipóxia/metabolismo , Necrose/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
8.
Curr Alzheimer Res ; 16(10): 934-949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31642778

RESUMO

BACKGROUND: Amyloid-ß42 oligomers (Aß42O), the proximate effectors of neurotoxicity observed in Alzheimer's disease (AD), can induce mitochondrial oxidative stress and impair mitochondrial function besides causing mitochondrial DNA (mtDNA) damage. Aß42O also regulate the proliferative and differentiative properties of stem cells. OBJECTIVE: We aimed to study whether Aß42O-induced mtDNA damage is involved in the regulation of stem cell differentiation. METHOD: Human iPSCs-derived neural stem cell (NSC) was applied to investigate the effect of Aß42O on reactive oxygen species (ROS) production and DNA damage using mitoSOX staining and long-range PCR lesion assay, respectively. mtDNA repair activity was measured by non-homologous end joining (NHEJ) in vitro assay using mitochondria isolates and the expression and localization of NHEJ components were determined by Western blot and immunofluorescence assay. The expressions of Tuj-1 and GFAP, detected by immunofluorescence and qPCR, respectively, were examined as an index of neurons and astrocytes production. RESULTS: We show that in NSC Aß42O treatment induces ROS production and mtDNA damage and impairs DNA end joining activity. NHEJ components, such as Ku70/80, DNA-PKcs, and XRCC4, are localized in mitochondria and silencing of XRCC4 significantly exacerbates the effect of Aß42O on mtDNA integrity. On the contrary, pre-treatment with Phytic Acid (IP6), which specifically stimulates DNA-PK-dependent end-joining, inhibits Aß42O-induced mtDNA damage and neuronal differentiation alteration. CONCLUSION: Aß42O-induced mtDNA repair impairment may change cell fate thus shifting human NSC differentiation toward an astrocytic lineage. Repair stimulation counteracts Aß42O neurotoxicity, suggesting mtDNA repair pathway as a potential target for the treatment of neurodegenerative disorders like AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Diferenciação Celular/fisiologia , Reparo do DNA/fisiologia , DNA Mitocondrial/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Fragmentos de Peptídeos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos
9.
Cell Death Dis ; 9(8): 830, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082779

RESUMO

Neurodegenerative diseases are characterized by a gradual loss of cognitive and physical functions. Medications for these disorders are limited and treat the symptoms only. There are no disease-modifying therapies available, which have been shown to slow or stop the continuing loss of neurons. Transdifferentiation, whereby somatic cells are reprogrammed into another lineage without going through an intermediate proliferative pluripotent stem cell stage, provides an alternative strategy for regenerative medicine and disease modeling. In particular, the transdifferentiation of somatic cells into specific subset of patient-specific neuronal cells offers alternative autologous cell therapeutic strategies for neurodegenerative disorders and presents a rich source of using diverse somatic cell types for relevant applications in translational, personalized medicine, as well as human mechanistic study, new drug-target identification, and novel drug screening systems. Here, we provide a comprehensive overview of the recent development of transdifferentiation research, with particular attention to chemical-induced transdifferentiation and perspectives for modeling and treatment of neurodegenerative diseases.


Assuntos
Transdiferenciação Celular , Reprogramação Celular , Doenças Neurodegenerativas/patologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Medicina Regenerativa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Front Aging Neurosci ; 8: 242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803664

RESUMO

Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions.

11.
Curr Alzheimer Res ; 13(11): 1208-1218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033054

RESUMO

Accumulation of DNA damage and impairment of DNA repair systems are involved in the pathogenesis of different neurodegenerative diseases. Whenever DNA damage is too extensive, the DNA damage response pathway provides for triggering cellular senescence and/or apoptosis. However, whether the increased level of DNA damage in neurodegenerative disorders is a cause rather than the consequence of neurodegenerative events remains to be established. Among possible DNA lesions, DNA double strand breaks (DSBs) are rare events, nevertheless they are the most lethal form of DNA damage. In neurons, DSBs are particularly deleterious because of their reduced DNA repair capability as compared to proliferating cells. Here, we provide a description of DSB repair systems and describe human studies showing the presence of several types of DNA lesions in three major neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Then, we analyze the role of DSB accumulation and deficiency of DSB repair systems in neurodegeneration by examining studies on animal models of neurodegenerative diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , Doenças Neurodegenerativas/genética , Animais , Modelos Animais de Doenças , Humanos
12.
Neurochem Res ; 40(1): 59-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25366464

RESUMO

Sirtuin 6 (SIRT6) is a member of nicotinamide adenine dinucleotide-dependent deacetylase protein family and has been implicated in the control of glucose and lipid metabolism, cancer, genomic stability and DNA repair. Moreover, SIRT6 regulates the expression of a large number of genes involved in stress response and aging. The role of SIRT6 in brain function and neuronal survival is largely unknown. Here, we biochemically characterized SIRT6 in brain tissues and primary neuronal cultures and found that it is highly expressed in cortical and hippocampal regions and enriched in the synaptosomal membrane fraction. Immunoblotting analysis on cortical and hippocampal neurons showed that SIRT6 is downregulated during maturation in vitro, reaching the lowest expression at 11 days in vitro. In addition, SIRT6 overexpression in terminally differentiated cortical and hippocampal neurons, mediated by a neuron-specific recombinant adeno-associated virus, downregulated cell viability under oxidative stress condition. By contrast, under control condition, SIRT6 overexpression had no detrimental effect. Overall these results suggest that SIRT6 may play a role in synaptic function and neuronal maturation and it may be implicated in the regulation of neuronal survival.


Assuntos
Estresse Oxidativo/fisiologia , Sirtuínas/fisiologia , Animais , Química Encefálica/fisiologia , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Vetores Genéticos , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Cultura Primária de Células , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
13.
J Biol Chem ; 287(4): 2618-31, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139836

RESUMO

Accumulation of DNA damage and deficiency in DNA repair potentially contribute to the progressive neuronal loss in neurodegenerative disorders, including Alzheimer disease (AD). In multicellular eukaryotes, double strand breaks (DSBs), the most lethal form of DNA damage, are mainly repaired by the nonhomologous end joining pathway, which relies on DNA-PK complex activity. Both the presence of DSBs and a decreased end joining activity have been reported in AD brains, but the molecular player causing DNA repair dysfunction is still undetermined. ß-Amyloid (Aß), a potential proximate effector of neurotoxicity in AD, might exert cytotoxic effects by reactive oxygen species generation and oxidative stress induction, which may then cause DNA damage. Here, we show that in PC12 cells sublethal concentrations of aggregated Aß(25-35) inhibit DNA-PK kinase activity, compromising DSB repair and sensitizing cells to nonlethal oxidative injury. The inhibition of DNA-PK activity is associated with down-regulation of the catalytic subunit DNA-PK (DNA-PKcs) protein levels, caused by oxidative stress and reversed by antioxidant treatment. Moreover, we show that sublethal doses of Aß(1-42) oligomers enter the nucleus of PC12 cells, accumulate as insoluble oligomeric species, and reduce DNA-PK kinase activity, although in the absence of oxidative stress. Overall, these findings suggest that Aß mediates inhibition of the DNA-PK-dependent nonhomologous end joining pathway contributing to the accumulation of DSBs that, if not efficiently repaired, may lead to the neuronal loss observed in AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Multimerização Proteica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Proteína Quinase Ativada por DNA/genética , Humanos , Proteínas Nucleares/genética , Células PC12 , Ratos
14.
Cancer ; 117(1): 162-74, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20806346

RESUMO

BACKGROUND: Experimental data suggest that glioblastoma cells expressing the stem cell marker CD133 play a major role in radiochemoresistance and tumor aggressiveness. To date, however, there is no clinical evidence that the fraction of CD133-positive cells in glioblastoma that recurs after radiochemotherapy may be relevant for prognosis. METHODS: The authors used immunohistochemistry to assess CD133 expression in 37 paired glioblastoma samples, including 1 primary tumor sample and 1 recurrent tumor sample, after patients received adjuvant radiochemotherapy. To assess the actual composition of the CD133-positive glioblastoma cell population, fluorescence-associated cell sorting (FACS) analysis was used to sort CD133-positive/CD45-negative cells that were assayed for tumor-specific chromosomal aberrations using interphase fluorescence in situ hybridization. To rule out endothelial precursor cells, CD133-positive fractions also were assayed with anti-CD34 by FACS. RESULTS: In recurrent glioblastomas, the percentage of CD133-positive cells was increased by 4.6-fold compared with the percentage in primary glioblastomas, although, in some tumors, it increased up to 10-fold and 20-fold. Unexpectedly, the increase in CD133 expression was associated significantly with longer survival after tumor recurrence. An analysis of tumor-specific chromosomal aberrations and in vivo studies revealed that the CD133-positive cell compartment of recurrent glioblastoma was composed of both cancer stem cells and nontumor neural stem cells. The latter cells represented from 20% to 60% of the CD133-positive cell population, and their relative percentage favorably affected the survival of patients with recurrent glioblastoma. Endothelial CD133-positive/CD34-positive precursors did not contribute to the CD133-positive cell population. CONCLUSIONS: The authors hypothesized that, similar to the phenomenon described in glioblastoma models, neural stem/progenitor cells that are recruited by the tumor from surrounding brain may exert an antitumorigenic effect.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva
15.
FASEB J ; 24(11): 4291-301, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20566622

RESUMO

Thymosin ß4 (Tß4) is an actin-binding peptide overexpressed in several tumors, including colon carcinomas. The aim of this study was to investigate the role of Tß4 in promoting the tumorigenic properties of colorectal cancer stem cells (CR-CSCs), which are responsible for tumor initiation and growth. We first found that CR-CSCs from different patients have higher Tß4 levels than normal epithelial cells. Then, we used a lentiviral strategy to down-regulate Tß4 expression in CR-CSCs and analyzed the effects of such modulation on proliferation, survival, and tumorigenic activity of CR-CSCs. Empty vector-transduced CR-CSCs were used as a control. Targeting of the Tß4 produced CR-CSCs with a lower capacity to grow and migrate in culture and, interestingly, reduced tumor size and aggressiveness of CR-CSC-based xenografts in mice. Moreover, such loss in tumorigenic activity was accompanied by a significant increase of phosphatase and tensin homologue (PTEN) and a concomitant reduction of the integrin-linked kinase (ILK) expression, which resulted in a decreased activation of protein kinase B (Akt). Accordingly, exogenous expression of an active form of Akt rescued all the protumoral features lost after Tß4 targeting in CR-CSCs. In conclusion, Tß4 may have important implications for therapeutic intervention for treatment of human colon carcinoma.


Assuntos
Neoplasias do Colo/fisiopatologia , Células-Tronco Neoplásicas/citologia , Timosina/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/fisiologia , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/virologia , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
16.
Neurochem Res ; 35(2): 239-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19731018

RESUMO

Protein phosphorylation is the main signaling system known to trigger synaptic changes underlying long-term potentiation (LTP). The timing of these phosphorylations plays an essential role to maintain the potentiated state of synapses. However, in mice a simultaneous analysis of phosphorylated proteins during early-LTP (E-LTP) has not been thoroughly carried out. Here we described phosphorylation changes of alphaCaMKII, ERK1/2, PKB/Akt and CREB at different times after E-LTP induced at Schaffer collateral/commissural fiber-CA1 synapses by 1 s 100 Hz tetanic stimulation in mouse hippocampal slices. We found that phosphorylation levels of all the molecules examined rapidly increased after tetanisation and remained above the basal level up to 30 min. Notably, we observed a sustained increment in the phosphorylation level of Akt at Ser473, whereas the phosphorylation level of Akt at Thr308 was unchanged. Unexpectedly, we also detected a marked increase of CREB target genes expression levels, c-fos, Egr-1 and exon-III containing BDNF transcripts. Our findings, besides providing a detailed timing of phosphorylation of the major kinases involved in E-LTP in mice, revealed that a modest LTP induction paradigm specifically triggers CREB-mediated gene expression.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinapses/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Estimulação Elétrica , Genes fos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Serina/metabolismo
17.
J Cell Sci ; 122(Pt 22): 4195-207, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861493

RESUMO

Thymosin beta4 (Tbeta4) is an actin-binding peptide whose expression in developing brain correlates with migration and neurite extension of neurons. Here, we studied the effects of the downregulation of Tbeta4 expression on growth and differentiation of murine neural progenitor cells (NPCs), using an antisense lentiviral vector. In differentiation-promoting medium, we found twice the number of neurons derived from the Tbeta4-antisense-transduced NPCs, which showed enhanced neurite outgrowth accompanied by increased expression of the adhesion complex N-cadherin-beta-catenin and increased ERK activation. Importantly, when the Tbeta4-antisense-transduced NPCs were transplanted in vivo into a mouse model of spinal cord injury, they promoted a significantly greater functional recovery. Locomotory recovery correlated with increased expression of the regeneration-promoting cell adhesion molecule L1 by the grafted Tbeta4-antisense-transduced NPCs. This resulted in an increased number of regenerating axons and in sprouting of serotonergic fibers surrounding and contacting the Tbeta4-antisense-transduced NPCs grafted into the lesion site. In conclusion, our data identify a new role for Tbeta4 in neuronal differentiation of NPCs by regulating fate determination and process outgrowth. Moreover, NPCs with reduced Tbeta4 levels generate an L1-enriched environment in the lesioned spinal cord that favors growth and sprouting of spared host axons and enhances the endogenous tissue-repair processes.


Assuntos
Regeneração Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Timosina/metabolismo , Animais , Axônios/fisiologia , Caderinas/metabolismo , Comunicação Celular , DNA Antissenso , Modelos Animais de Doenças , Regulação para Baixo , Camundongos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/fisiologia , Telencéfalo/citologia , Timosina/genética , beta Catenina/metabolismo
18.
Eur J Neurosci ; 28(7): 1275-85, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18973555

RESUMO

Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and expression of GABA(A) receptors are altered in G93A motor neurons inducing a higher Cl(-) influx into the cell with a possible consequent neuronal excitotoxicity acceleration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Morte Celular/genética , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas GABAérgicos/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Inibição Neural/genética , Neurotoxinas/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
19.
Ann N Y Acad Sci ; 1112: 219-24, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17947590

RESUMO

The aim of this study was to evaluate the possible neuroprotective effects of thymosin beta(4) in different models of excitotoxicity. The application of thymosin beta(4) significantly attenuated glutamate-induced toxicity both in primary cultures of cortical neurons and in rat hippocampal slices. In in vivo experiments, the intracerebroventricular administration of thymosin beta(4) significantly reduced hippocampal neuronal loss induced by kainic acid. These results show that thymosin beta(4) induced a protective effect in models of excitotoxicity. The mechanisms underlying such an effect, as well as the real neuroprotective potential of thymosin beta(4), are worthy of further investigations.


Assuntos
Ácido Glutâmico/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Timosina/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos
20.
Hippocampus ; 16(10): 843-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16897722

RESUMO

In this study, we used in vitro electrophysiology along with immunohistochemistry and molecular techniques to study the subiculum--a limbic structure that gates the information flow from and to the hippocampus--in pilocarpine-treated epileptic rats. Comparative data were obtained from age-matched nonepileptic controls (NEC). Subicular neurons in hippocampal-entorhinal cortex (EC) slices of epileptic rats were: (i) hyperexcitable when activated by CA1 or EC inputs; and (ii) generated spontaneous postsynaptic potentials at higher frequencies than NEC cells. Analysis of pharmacologically isolated, GABA(A) receptor-mediated inhibitory postsynaptic potentials revealed more positive reversal potentials in epileptic tissue (-67.8 +/- 6.3 mV, n = 16 vs. -74.8 +/- 3.6 mV in NEC, n = 13; P < 0.001) combined with a reduction in peak conductance (17.6 +/- 11.3 nS vs. 41.1 +/- 26.7 nS in NEC; P < 0.003). These electrophysiological data correlated in the epileptic subiculum with (i) reduced levels of mRNA expression and immunoreactivity of the neuron-specific potassium-chloride cotransporter 2; (ii) decreased number of parvalbumin-positive cells; and (iii) increased synaptophysin (a putative marker of sprouting) immunoreactivity. These findings identify an increase in network excitability within the subiculum of pilocarpine-treated, epileptic rats and point at a reduction in inhibition as an underlying mechanism.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Biomarcadores/metabolismo , Convulsivantes/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia do Lobo Temporal/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Parvalbuminas/metabolismo , Pilocarpina/farmacologia , Ratos , Simportadores/genética , Simportadores/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Sinaptofisina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA