Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Breed ; 44(2): 7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263978

RESUMO

Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.

2.
Front Plant Sci ; 11: 699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670309

RESUMO

There is a wealth of resistance genes in the Mexican wild relative of cultivated Solanum, but very few of these species are sexually compatible with cultivated Solanum tuberosum. The most devastating disease of potato is late blight caused by the oomycete Phytophthora infestans (Pi). The wild hexaploid species S. demissum, which it is able to cross with potato, was used to transfer eleven race-specific genes by introgressive hybridization that were subsequently widely used in potato breeding. However, there are now more virulent races of Pi that can overcome all of these genes. The most sustainable strategy for protecting potatoes from late blight is to pyramid or stack broad-spectrum resistance genes into the cultivars. Recently four broad-spectrum genes (Rpi) conferring resistance to Pi were identified and cloned from the sexually incompatible species S. bulbocastanum: Rpi-blb1 (RB), Rpi-blb2, Rpi-blb3, and Rpi-bt1. For this research, a resistant S. bulbocastanum accession was selected carrying the genes Rpi-blb1 and Rpi-blb3 together with race-specific R3a and R3b genes. This accession was previously used to produce a large number of somatic hybrids (SHs) with five commercial potato cultivars using protoplast electrofusion. In this study, three SHs with cv. 'Delikat' were selected and backcross generations (i.e., BC1 and BC2) were obtained using cvs. 'Baltica', 'Quarta', 'Romanze', and 'Sarpo Mira'. Their assessment using gene-specific markers demonstrates that these genes are present in the SHs and their BC progenies. We identified plants carrying all four genes that were resistant to foliage blight in greenhouse and field trials. Functionality of the genes was shown by using agro-infiltration with the effectors of corresponding Avr genes. For a number of hybrids and BC clones yield and tuber number were not significantly different from that of the parent cultivar 'Delikat' in field trials. The evaluation of agronomic traits of selected BC2 clones and of their processing qualities revealed valuable material for breeding late blight durable resistant potato. We show that the combination of somatic hybridization with the additional use of gene specific markers and corresponding Avr effectors is an efficient approach for the successful identification and introgression of late blight resistance genes into the potato gene pool.

3.
J Exp Bot ; 71(16): 4703-4714, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32473016

RESUMO

Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.


Assuntos
Fusarium , Hordeum , Cromossomos , Doenças das Plantas/genética , Triticum/genética
4.
Cytogenet Genome Res ; 160(1): 47-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32172236

RESUMO

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.


Assuntos
Meiose/genética , Triticale/genética , Triticum/genética , Cromatina/metabolismo , Pareamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Análise Citogenética , Genes de Plantas , Variação Genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Metáfase , Ploidias , Secale/genética , Especificidade da Espécie , Translocação Genética
5.
Sci Rep ; 10(1): 1792, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019962

RESUMO

Wheat-rye T1BL.1RS translocation is widespread worldwide as the genes on 1RS arm have positive effect on stress resistance, grain yield and adaptation ability of wheat. Nowadays, the T1BL.1RS wheat cultivars have become susceptible to rust diseases because of the monophyletic ('Petkus') origin of 1RS. Here we report and discuss the production and detailed investigation of a new T1BL.1RS translocation line carrying 1RS with widened genetic base originating from Secale cereanum. Line '179' exhibited improved spike morphology traits, resistance against stripe rust and leaf rust, as well as higher tillering capacity, fertility and dietary fiber (arabynoxylan) content than the parental wheat genotype. Comparative analyses based on molecular cytogenetic methods and molecular (SSR and DArTseq) makers indicate that the 1RS arm of line '179' is a recombinant of S. cereale and S. strictum homologues, and approximately 16% of its loci were different from that of 'Petkus' origin. 162 (69.5%) 1RS-specific markers were associated with genes, including 10 markers with putative disease resistance functions and LRR domains found on the subtelomeric or pericentromeric regions of 1RS. Line '179' will facilitate the map-based cloning of the resistance genes, and it can contribute to healthy eating and a more cost-efficient wheat production.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Doenças das Plantas/genética , Secale/genética , Triticum/genética , Plantas Geneticamente Modificadas , Translocação Genética
6.
Nat Genet ; 51(5): 905-911, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043760

RESUMO

For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world's most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement.


Assuntos
Triticum/genética , Pão , Domesticação , Evolução Molecular , Variação Genética , Genoma de Planta , Modelos Genéticos , Filogenia , Melhoramento Vegetal , Sequenciamento do Exoma
7.
Plant J ; 99(6): 1172-1191, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31108005

RESUMO

Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.


Assuntos
Aclimatação/genética , Produtos Agrícolas/genética , Exoma , Hordeum/genética , Relógios Circadianos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento do Exoma
8.
PLoS One ; 14(2): e0211892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30721262

RESUMO

Wild relatives of wheat, such as Aegilops spp. are potential sources of genes conferring tolerance to drought stress. As drought stress affects seed composition, the main goal of the present study was to determine the effects of drought stress on the content and composition of the grain storage protein (gliadin (Gli), glutenin (Glu), unextractable polymeric proteins (UPP%) and dietary fiber (arabinoxylan, ß-glucan) components of hexaploid bread wheat (T. aestivum) lines containing added chromosomes from Ae. biuncialis or Ae. geniculata. Both Aegilops parents have higher contents of protein and ß-glucan and higher proportions of water-soluble arabinoxylans (determined as pentosans) than wheat when grown under both well-watered and drought stress conditions. In general, drought stress resulted in increased contents of protein and total pentosans in the addition lines, while the ß-glucan content decreased in many of the addition lines. The differences found between the wheat/Aegilops addition lines and wheat parents under well-watered conditions were also manifested under drought stress conditions: Namely, elevated ß-glucan content was found in addition lines containing chromosomes 5Ug, 7Ug and 7Mb, while chromosomes 1Ub and 1Mg affected the proportion of polymeric proteins (determined as Glu/Gli and UPP%, respectively) under both well-watered and drought stress conditions. Furthermore, the addition of chromosome 6Mg decreased the WE-pentosan content under both conditions. The grain composition of the Aegilops accessions was more stable under drought stress than that of wheat, and wheat lines with the added Aegilops chromosomes 2Mg and 5Mg also had more stable grain protein and pentosan contents. The negative effects of drought stress on both the physical and compositional properties of wheat were also reduced by the addition of these. These results suggest that the stability of the grain composition could be improved under drought stress conditions by the intraspecific hybridization of wheat with its wild relatives.


Assuntos
Aegilops/genética , Cruzamentos Genéticos , Fibras na Dieta/metabolismo , Farinha , Proteínas de Vegetais Comestíveis , Triticum , Aegilops/crescimento & desenvolvimento , Desidratação , Proteínas de Vegetais Comestíveis/biossíntese , Proteínas de Vegetais Comestíveis/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
PLoS One ; 13(11): e0206248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395616

RESUMO

Interspecific hybridization between bread wheat (Triticum aestivum, 2n = 42) and related species allows the transfer of agronomic and quality traits, whereby subsequent generations comprise an improved genetic background and can be directly applied in wheat breeding programmes. While wild relatives are frequently used as sources of agronomically favourable traits, cultivated species can also improve wheat quality and stress resistance. A salt-tolerant 'Asakaze'/'Manas' 7H disomic addition line (2n = 44) with elevated ß-glucan content, but with low fertility and an unstable genetic background was developed in an earlier wheat-barley prebreeding programme. The aim of the present study was to take this hybridization programme further and transfer the favourable barley traits into a more stable genetic background. Taking advantage of the breakage-fusion mechanism of univalent chromosomes, the 'Rannaya' winter wheat 7B monosomic line was used as female partner to the 7H addition line male, leading to the development of a compensating wheat/barley Robertsonian translocation line (7BS.7HL centric fusion, 2n = 42) exhibiting higher salt tolerance and elevated grain ß-glucan content. Throughout the crossing programme, comprising the F1-F4 generations, genomic in situ hybridization, fluorescence in situ hybridization and chromosome-specific molecular markers were used to trace and identify the wheat and barley chromatin. Investigations on salt tolerance during germination and on the (1,3;1,4)-ß-D-glucan (mixed-linkage glucan [MLG]) content of the seeds confirmed the salt tolerance and elevated grain MLG content of the translocation line, which can be directly applied in current wheat breeding programmes.


Assuntos
Hordeum/genética , Tolerância ao Sal/genética , Estações do Ano , Translocação Genética , Triticum/genética , beta-Glucanas/metabolismo , Cromossomos de Plantas/genética , Genótipo , Germinação/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Mitose/efeitos dos fármacos , Mitose/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Triticum/efeitos dos fármacos
10.
PLoS One ; 13(6): e0198758, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889875

RESUMO

Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1-0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat.


Assuntos
Hordeum/genética , Translocação Genética , Triticum/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Genótipo , Hibridização Genética
11.
Front Plant Sci ; 8: 1529, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932231

RESUMO

Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata. This study showed that the addition of chromosomes 2Ug, 4Ug, 5Ug, 7Ug, 2Mg, 5Mg, and 7Mg of Ae. geniculata and 3Ub, 2Mb, 3Mb, and 7Mb of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1Ug and 1Mg increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1Ub and 6Ub led to its decrease. Both Aegilops species had higher proportions of ß-glucan compared to arabinoxylan (AX) than wheat lines, and elevated ß-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5Ug, 7Ug, and 1Ub while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6Ug, and 2Mb. Chromosomes 5Ug and 7Mb also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.

12.
PLoS One ; 12(3): e0173623, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278169

RESUMO

This paper reports detailed FISH-based karyotypes for three diploid wheatgrass species Agropyron cristatum (L.) Beauv., Thinopyrum bessarabicum (Savul.&Rayss) A. Löve, Pseudoroegneria spicata (Pursh) A. Löve, the supposed ancestors of hexaploid Thinopyrum intermedium (Host) Barkworth & D.R.Dewey, compiled using DNA repeats and comparative genome analysis based on COS markers. Fluorescence in situ hybridization (FISH) with repetitive DNA probes proved suitable for the identification of individual chromosomes in the diploid JJ, StSt and PP genomes. Of the seven microsatellite markers tested only the (GAA)n trinucleotide sequence was appropriate for use as a single chromosome marker for the P. spicata AS chromosome. Based on COS marker analysis, the phylogenetic relationship between diploid wheatgrasses and the hexaploid bread wheat genomes was established. These findings confirmed that the J and E genomes are in neighbouring clusters.


Assuntos
Cromossomos de Plantas/genética , Diploide , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Repetições de Microssatélites/genética , Filogenia , Poaceae/genética , Cariotipagem , Poaceae/classificação
13.
PLoS One ; 12(3): e0174170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328973

RESUMO

Salinity-induced osmotic, ionic and oxidative stress responses were investigated on Asakaze/Manas wheat/barley addition lines 7H, 7HL and 7HS, together with their barley (salt-tolerant) and wheat (relatively salt-sensitive) parents. Growth, photosynthetic activity, chlorophyll degradation, proline, glycine betaine accumulation, sugar metabolism, Na+ and K+ uptake and transport processes and the role of polyamines and antioxidants were studied in young plants grown in hydroponic culture with or without salt treatment. Changes in plant growth and photosynthetic activity of plants demonstrated that the salt tolerance of the addition lines 7H and 7HL was similar to that of barley parent cv. Manas, while the sensitivity of the addition line 7HS was similar to that of the wheat parent cv. Asakaze. The Na accumulation in the roots and shoots did not differ between the addition lines and wheat parent. The activation of various genes related to Na uptake and transport was not correlated with the salt tolerance of the genotypes. These results indicated that the direct regulation of Na transport processes is not the main reason for the salt tolerance of these genotypes. Salt treatment induced a complex metabolic rearrangement in both the roots and shoots of all the genotypes. Elevated proline accumulation in the roots and enhanced sugar metabolism in the shoots were found to be important for salt tolerance in the 7H and 7HL addition lines and in barley cv. Manas. In wheat cv. Asakaze and the 7HS addition line the polyamine metabolism was activated. It seems that osmotic adjustment is a more important process in the improvement of salt tolerance in 7H addition lines than the direct regulation of Na transport processes or antioxidant defence.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Genes de Plantas/genética , Hordeum/metabolismo , Osmose/fisiologia , Fotossíntese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Triticum/metabolismo
14.
J Appl Genet ; 58(1): 67-70, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27468932

RESUMO

The cytomolecular discrimination of the Am- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the Am and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the Am and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6Am and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2Am and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3Am and 3A. Chromosomes 7Am and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the Am chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.


Assuntos
Genoma de Planta , Hibridização Genética , Repetições de Microssatélites , Triticum/genética , Cromossomos de Plantas/genética , Sondas de DNA , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Triticum/classificação
15.
Comp Cytogenet ; 10(2): 283-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551349

RESUMO

Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum bessarabicum (Savulescu & Rayss, 1923) Á. Löve, 1984 (genome J(b) or E(b), 2n = 14), and Pseudoroegneria spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum ponticum (Podpera, 1902) Z.-W. Liu et R.-C.Wang, 1993 named "Agropyron glael" and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum intermedium contained 19 J, 9 J(St) and 14 St chromosomes. The three analysed Thinopyrum ponticum accessions had different chromosome compositions: 43 J + 27 J(St) (PI531737), 40 J + 30 J(St) (VIR-44486) and 38 J + 32 J(St) (D-3494). The synthetic hybrid carried 18 J, 28 J(St) and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 J(St)+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum intermedium/Thinopyrum ponticum synthetic hybrid called A. glael.

16.
Plant J ; 88(3): 452-467, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27402341

RESUMO

Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.


Assuntos
Cromossomos de Plantas/genética , Triticum/genética , Citometria de Fluxo , Hibridização In Situ
17.
BMC Genet ; 17(1): 87, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328706

RESUMO

BACKGROUND: Cultivated barley belongs to the tertiary genepool of hexaploid wheat. Genes of interest can be transferred from barley into wheat through wide hybridization. The application of wheat-barley introgression lines could provide an excellent tool for the transfer of earliness, favourable amino acid composition, biotic stress resistance, abiotic stress tolerance, or good tillering ability into wheat. RESULTS: A set of 10 wheat-barley ditelosomic addition lines (2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS and 7HL) was developed from the progenies of an Asakaze/Manas wheat-barley hybrid produced in Martonvásár, Hungary. The addition lines were selected from self-fertilized plants of the BC2F2-BC2F4 generations using genomic in situ hybridization (GISH) and were identified by fluorescence in situ hybridization (FISH) with repetitive DNA probes [HvT01, (GAA)7 and centromere-specific (AGGGAG)4 probes]. The cytogenetic identification was confirmed using barley arm-specific SSR and STS markers. The ditelosomic additions were propagated in the phytotron and in the field, and morphological parameters (plant height, tillering, length of the main spike, number of seeds/spike and seeds/plant, and spike characteristics) were described. In addition, the salt stress response of the ditelosomic additions was determined. CONCLUSIONS: The six-rowed winter barley cultivar Manas is much better adapted to Central European environmental conditions than the two-rowed spring barley Betzes previously used in wheat-barley crosses. The production of wheat-barley ditelosomic addition lines has a wide range of applications both for breeding (transfer of useful genes to the recipient species) and for basic research (mapping of barley genes, genetic and evolutionary studies and heterologous expression of barley genes in the wheat background).


Assuntos
Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Hordeum/genética , Poliploidia , Triticum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Sais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
18.
J Appl Genet ; 57(4): 427-437, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26922334

RESUMO

A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.


Assuntos
Resistência à Doença/genética , Hibridização Genética , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota , Cromossomos de Plantas , Marcadores Genéticos , Hibridização in Situ Fluorescente , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
19.
Theor Appl Genet ; 129(5): 1045-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883040

RESUMO

KEY MESSAGE: Wheat-Secale cereanum addition lines with yellow rust resistance (6R) and increased arabinoxylan content (1R, 4R, 6R) have been selected and identified in order to increase biodiversity of wheat. Perennial rye (Secale cereanum, 2n = 2x = 14, RR) cultivar Kriszta has a large gene pool that can be exploited in wheat breeding. It has high protein and dietary fibre content, carries several resistance genes, tolerant to frost and drought, and adapts well to disadvantageous soil and weather conditions. In order to incorporate agronomically useful features from this perennial rye into cultivated wheat, backcross progenies derived from a cross between the wheat line Mv9kr1 and perennial rye 'Kriszta' have been produced, and addition lines disomic for 1R, 4R and 6R chromosomes have been selected using GISH, FISH and SSR markers. Quality measurements showed that addition of 'Kriszta' chromosomes 4R and 6R to the wheat genome had increased the total protein content. The 4R addition line contained slightly, while 1R and 6R additions significantly higher amount of arabinoxylan than the parental wheat line. Besides this, the 6R addition line appeared to be resistant to yellow rust in highly infected nurseries, consequently it may carry a new effective gene different from that harboured in the 1RS.1BL translocation for resistance to this disease.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/química , Secale/genética , Xilanos/química , Basidiomycota , Cromossomos de Plantas , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Hibridização Genética , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Secale/química , Triticum/genética
20.
Genet Resour Crop Evol ; 62(1): 55-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412939

RESUMO

A recently developed synthetic amphiploid, Triticum timococcum Kost., nom. nud. (2n = 6x = 42, AtAtGGAmAm) is described in the present study. This hexaploid taxon was developed by colchicine treatment in Martonvásár from the hybrid of a selected accession of Triticum timopheevii Zhuk. (2n = 4x = 28, AtAtGG) and a prebred semi-dwarf line of Triticum monococcum L. (2n = 2x = 14, AmAm). A detailed cytomolecular examination was carried out using the sequential multicolour fluorescence and genomic in situ hybridization techniques (FISH and mcGISH). It was proved that T. timococcum has 42 chromosomes originating from its parents. The chromosomes of the A genomes of T. monococcum and T. timopheevii could be distinguished in the amphiploid using FISH. The successful discrimination of the chromosomes was supported by the karyotypes of the three genomes and the successful optimization of the mcGISH technique for the A and G chromosomes achieved in the present study. A phenotypic evaluation was also carried out under natural and artificial growing conditions in 2012 and 2013. Based on the results, T. timococcum has intermediate characteristics in terms of spike (spikelet) shape and plant height, while it is similar to the female parent, T. timopheevii regarding pubescence. Like its parents, T. timococcum showed outstanding resistance to the main fungal diseases of wheat. T. timococcum headed later and developed longer and looser spikes, fewer tillers and only a third as many seeds than its parents. The third generation of T. timococcum was able to develop an acceptable number of seeds, even taking into account the reduced germination ability in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA