Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(7): 1574-1577, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221713

RESUMO

We numerically investigate high-power, modulational instability-based supercontinuum sources. Such sources have spectra that reach the infrared material absorption edge and as a result the spectrum has a strong narrow blue peak (dispersive wave group velocity matched to solitons at the infrared loss edge) followed by a significant dip in the neighboring longer-wavelength region. In a wide range of applications one prefers a broader and more flat blue part within a certain minimum and maximum power spectral density. From the perspective of fiber degradation it would be desirable to achieve this at reduced pump peak powers. We show that it is possible to improve the flatness by more than a factor of 3 by modulating the input peak power, although this comes at the expense of slightly higher relative intensity noise. Specifically, we consider a standard 6.6 W, 80 MHz supercontinuum source with a 455 nm blue edge, which uses 7 ps pump pulses. We then modulate its peak power to generate a pump pulse train having two and three different sub-pulses.

2.
Struct Dyn ; 8(2): 024501, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33869663

RESUMO

Ultrafast, light-induced dynamics in copper-zinc-tin-sulfide (CZTS) photovoltaic nanoparticles are investigated through a combination of optical and x-ray transient absorption spectroscopy. Laser-pump, x-ray-probe spectroscopy on a colloidal CZTS nanoparticle ink yields element-specificity, which reveals a rapid photo-induced shift of electron density away from Cu-sites, affecting the molecular orbital occupation and structure of CZTS. We observe the formation of a stable charge-separated and thermally excited structure, which persists for nanoseconds and involves an increased charge density at the Zn sites. Combined with density functional theory calculations, the results provide new insight into the structural and electronic dynamics of CZTS absorbers for solar cells.

3.
Sci Rep ; 10(1): 18447, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116213

RESUMO

The realization of a table-top tunable deep-ultraviolet (UV) laser source with excellent noise properties would significantly benefit the scientific community, particularly within imaging and spectroscopic applications, where source noise has a crucial role. Here we provide a thorough characterization of the pulse-to-pulse relative intensity noise (RIN) of such a deep-UV source based on an argon (Ar)-filled anti-resonant hollow-core (AR HC) fiber. Suitable pump pulses are produced using a compact commercially available laser centered at 1030 nm with a pulse duration of 400 fs, followed by a nonlinear compression stage that generates pulses with 30 fs duration, 24.2 µJ energy at 100 kHz repetition rate and a RIN of < 1%. Pump pulses coupled into the AR HC fiber undergo extreme spectral broadening creating a supercontinuum, leading to efficient energy transfer to a phase-matched resonant dispersive wave (RDW) in the deep-UV spectral region. The center wavelength of the RDW could be tuned between 236 and 377 nm by adjusting the Ar pressure in a 140 mm length of fiber. Under optimal pump conditions the RIN properties were demonstrated to be exceptionally good, with a value as low as 1.9% at ~ 282 nm. The RIN is resolved spectrally for the pump pulses, the generated RDW and the broadband supercontinuum. These results constitute the first broadband RIN characterization of such a deep-UV source and provide a significant step forward towards a stable, compact and tunable laser source for applications in the deep-UV spectral region.

4.
J Synchrotron Radiat ; 25(Pt 2): 306-315, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488907

RESUMO

Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA