Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Theranostics ; 14(7): 2777-2793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773978

RESUMO

Small extracellular vesicles (sEVs) are naturally occurring vesicles that have the potential to be manipulated to become promising drug delivery vehicles for on-demand in vitro and in vivo gene editing. Here, we developed the modular safeEXO platform, a prototype sEV delivery vehicle that is mostly devoid of endogenous RNA and can efficaciously deliver RNA and ribonucleoprotein (RNP) complexes to their intended intracellular targets manifested by downstream biologic activity. We also successfully engineered producer cells to produce safeEXO vehicles that contain endogenous Cas9 (safeEXO-CAS) to effectively deliver efficient ribonucleoprotein (RNP)-mediated CRISPR genome editing machinery to organs or diseased cells in vitro and in vivo. We confirmed that safeEXO-CAS sEVs could co-deliver ssDNA, sgRNA and siRNA, and efficaciously mediate gene insertion in a dose-dependent manner. We demonstrated the potential to target safeEXO-CAS sEVs by engineering sEVs to express a tissue-specific moiety, integrin alpha-6 (safeEXO-CAS-ITGA6), which increased their uptake to lung epithelial cells in vitro and in vivo. We tested the ability of safeEXO-CAS-ITGA6 loaded with EMX1 sgRNAs to induce lung-targeted editing in mice, which demonstrated significant gene editing in the lungs with no signs of morbidity or detectable changes in immune cell populations. Our results demonstrate that our modular safeEXO platform represents a targetable, safe, and efficacious vehicle to deliver nucleic acid-based therapeutics that successfully reach their intracellular targets. Furthermore, safeEXO producer cells can be genetically manipulated to produce safeEXO vehicles containing CRISPR machinery for more efficient RNP-mediated genome editing. This platform has the potential to improve current therapies and increase the landscape of treatment for various human diseases using RNAi and CRISPR approaches.


Assuntos
Sistemas CRISPR-Cas , Vesículas Extracelulares , Edição de Genes , Técnicas de Transferência de Genes , Edição de Genes/métodos , Vesículas Extracelulares/metabolismo , Sistemas CRISPR-Cas/genética , Animais , Humanos , Camundongos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Guia de Sistemas CRISPR-Cas/genética
2.
Nucleus ; 15(1): 2350180, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38773934

RESUMO

Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.


Assuntos
Cromatina , Epigênese Genética , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Animais , Estresse Fisiológico/genética
4.
Sci Adv ; 10(8): eadk3663, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394204

RESUMO

Glycolytic metabolism may account for antitumor immunity failure. Pyruvate kinase M2 (PKM2) and platelet phosphofructokinase (PFKP), two key enzymes involved in the glycolytic pathway, are hyperactivated in head and neck squamous cell carcinoma (HNSCC). Using ganetespib as a drug model for heat shock protein 90 (HSP90) inhibition and combining results from clinical trials and animal treatment, we demonstrated that HSP90 inhibition leads to a blockade of glycolytic flux in HNSCC cells by simultaneously suppressing PKM2 and PFKP at both the transcriptional and posttranslational levels. Down-regulation of tumor glycolysis facilitates tumor infiltration of cytotoxic T cells via suppression of glycolysis-dependent interleukin-8 signaling. The addition of ganetespib to radiation attenuates radiation-induced up-regulation of PKM2 and PFKP and potentiates T cell-mediated antitumor immunity, resulting in a more potent antitumor effect than either treatment alone, providing a molecular basis for exploring the combination of HSP90 inhibitors with radiotherapy to improve outcomes for patients with HNSCC.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Antineoplásicos/farmacologia , Glicólise
5.
Int J Oral Maxillofac Implants ; 38(6): 1083-1096, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085739

RESUMO

PURPOSE: Alveolar ridge split (ARS) is ridge augmentation to mitigate ridge width loss that typically follows tooth extraction. This study aimed to determine the efficacy of ARS on alveolar ridge horizontal dimensional changes and the survival rates of implants placed into the same sites. MATERIALS AND METHODS: An electronic and manual search was conducted for English articles published up to January 1, 2021. The PICO (problem, intervention, comparison, outcome) model for quantitative studies was established to address the following two focused questions: (1) What are the effects of the ARS technique on increasing alveolar width and implant survival?; and (2) what are the factors that influence the efficacy of the ARS technique? The outcome measures in this systematic review and meta-analysis were mean alveolar ridge gain-horizontal (buccolingual) in millimeters from baseline (initial presentation) to final assessment (minimum of 12 weeks after ARS), implant survival rate, and patient-reported complication rate. The risk of bias was evaluated using the ROBINS-I assessment tool for non-randomized interventional studies. Weighted means were calculated, and pooled effects and 95% confidence intervals (95% CI) were depicted on forest plots. Publication bias was assessed by funnel plot and Rosenthal Statistics. A sensitivity analysis was undertaken to assess the primary outcome. RESULTS: Overall, 35 studies met the inclusion criteria and were included in the systematic review. The mean alveolar ridge gain for ARS was 3.06 mm (95% CI: 3.01 to 3.12 mm). A mean gain of 2.99 mm (95% CI: 2.93 to 3.04 mm) was found after sensitivity analysis, excluding one article with a high risk of bias. There were no significant differences in ridge width in the group with bone graft (mean difference [95% CI] of 2.97 mm [2.91 to 3.03 mm]) and in the group without bone graft (mean difference [95% CI] of 3.06 mm [2.92 to 3.20 mm]). The ARS technique demonstrated a 98.17% implant survival rate in 4,446 implants, 4,103 of which were placed at the time of ARS with a 97.72% implant survival rate, and 343 placed in a delayed approach with a 99.14% implant survival rate. The risk of bias was low in 14.2%, low to moderate in 68.5%, moderate in 11.4%, and severe/moderate in 5.7% of the included studies. CONCLUSIONS: ARS shows a high implant survival rate in narrow alveolar ridges, adequate horizontal alveolar ridge dimensional gain regardless of adding grafting material, and minimal patient-reported complications.


Assuntos
Aumento do Rebordo Alveolar , Implantes Dentários , Humanos , Implantação Dentária Endóssea/métodos , Aumento do Rebordo Alveolar/métodos , Processo Alveolar/cirurgia , Transplante Ósseo/métodos
6.
J Immunol Methods ; 515: 113444, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868498

RESUMO

Flow cytometry (FC) is a highly informative technology that can provide valuable information about immune phenotype monitoring and immune cell states. However, there is a paucity of comprehensive panels developed and validated for use on frozen samples. Here, we developed a 17-plex flow cytometry panel to detect subtypes, frequencies, and functions of different immune cells that can be leveraged to study the different cellular characteristics in different disease models, physiological, and pathological conditions. This panel identifies surface markers to characterize T cells (CD8+, CD4+), natural killer (NK) cells and their subtypes (immature, cytotoxic, exhausted, activated),natural killer T (NKT) cells, neutrophils, macrophages (M1 (pro-inflammatory) and M2 (anti-inflammatory)), monocytes and their subtypes (classical and non-classical), dendritic cells (DC) and their subtypes (DC1, DC2), and eosinophils. The panel was designed to include only surface markers to avoid the necessity for fixation and permeabilization steps. This panel was optimized using cryopreserved cells. Immunophenotyping of spleen and bone marrow using the proposed panel was efficient in correctly differentiating the immune cell subtypes in inflammatory model of ligature-induced periodontitis, in which we found increased percentage of NKT cells, activated and mature/cytotoxic NK cells in the bone marrow of affected mice. This panel enables in-depth immunophenotyping of murine immune cells in bone marrow, spleen, tumors, and other non-immune tissues of mice. It could be a tool for systematic analysis of immune cell profiling in inflammatory conditions, systemic diseases, and tumor microenvironments.


Assuntos
Medula Óssea , Baço , Camundongos , Animais , Citometria de Fluxo , Monócitos , Imunofenotipagem , Osso e Ossos
7.
Oral Oncol ; 138: 106330, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773387

RESUMO

Head and neck squamous cell carcinoma (HNSCC) outcomes remain stagnant, in part due to a poor understanding of HNSCC biology. The importance of tumor heterogeneity as an independent predictor of outcomes and treatment failure in HNSCC has recently come to light. With this understanding, 3D culture systems, including patient derived organoids (PDO) and organotypic culture (OTC), that capture this heterogeneity may allow for modeling and manipulation of critical subpopulations, such as p-EMT, as well as interactions between cancer cells and immune and stromal cells in the microenvironment. Here, we review work that has been done using PDO and OTC models of HNSCC, which demonstrates that these 3D culture models capture in vivo tumor heterogeneity and can be used to model tumor biology and treatment response in a way that faithfully recapitulates in vivo characteristics. As such, in vitro 3D culture models represent an important bridge between 2D monolayer culture and in vivo models such as patient derived xenografts.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/patologia , Técnicas de Cultura , Organoides/patologia , Células Estromais , Microambiente Tumoral
8.
Artigo em Inglês | MEDLINE | ID: mdl-36661870

RESUMO

This investigation was designed to evaluate the efficacy of an erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser (laser group) compared to conventional mechanical debridement (control group) in the treatment of peri-implantitis. In a double-blinded, randomized, controlled clinical trial, 32 patients with 88 implants with peri-implantitis were randomly assigned to either group. Statistical analyses were performed at 9 months for both groups. The laser-treated group showed a statistically significant reduction in probing depth (PD) compared to the control group (P = .04), but no statistically significant differences were observed for clinical attachment level gain (P = .29) or reduction of bleeding on probing (P = .09). In the subgroup analysis, mandibular single implants with screw-retained restorations treated with Er,Cr:YSGG demonstrated a statistically significant decrease in PD (P < .05) compared to all other groups. A complete resolution of peri-implantitis was achieved in 21% of implants in the test group and 5% of implants in the control group. Er,Cr:YSGG laser is an efficacious therapeutic tool to treat peri-implantitis, achieving greater PD reduction than conventional mechanical debridement alone. Er,Cr:YSGG laser also showed increased benefits in the treatment of mandibular, screw-retained, and single-unit implants compared to the sole use of conventional mechanical debridement.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Peri-Implantite , Humanos , Lasers de Estado Sólido/uso terapêutico , Peri-Implantite/terapia , Ítrio/uso terapêutico , Érbio/uso terapêutico
9.
Clin Cancer Res ; 29(5): 910-920, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508165

RESUMO

PURPOSE: The purpose of this study was to better understand the complex molecular biomarkers and signatures of head and neck cancer (HNC) among Black patients and identify possible molecular changes associated with HNC disparities. EXPERIMENTAL DESIGN: Molecular subtypes and genomic changes in HNC samples from patients of African and European ancestry in The Cancer Genome Atlas, Memorial Sloan Kettering Cancer Center, Broad Institute, MD Anderson Cancer Center, and John Hopkins University were identified. Molecular features (genomic, proteomic, transcriptomic) associated with race and genomic alterations associated with clinical outcomes were determined. An independent cohort of HNC tumor specimens was used to validate the primary findings using IHC. RESULTS: Black patients were found to have a younger age at diagnosis, more aggressive tumor types, higher rates of metastasis, and worse survival compared with White patients. Black patients had fewer human papillomavirus-positive tumor types and higher frequencies of laryngeal subtype tumors. Higher frequencies of TP53, MYO18B, KMT2D, and UNC13C mutations and a lower frequency of PIK3CA mutations were observed in Black patients. Tumors of Black patients showed significant enrichment of c-MYC and RET-tyrosine signaling and amplifications. A significant increase in tumor expression of c-MYC in Black patients was observed and was associated with poor survival outcomes in the independent cohort. CONCLUSIONS: Novel genomic modifications and molecular signatures may be related to environmental, social, and behavioral factors associated with racial disparities in HNC. Unique tumor mutations and biological pathways have potential clinical utility in providing more targeted and individualized screening, diagnostic, and treatment modalities to improve health outcomes.


Assuntos
População Negra , Neoplasias de Cabeça e Pescoço , Humanos , População Negra/genética , Neoplasias de Cabeça e Pescoço/etnologia , Neoplasias de Cabeça e Pescoço/genética , Mutação , Proteômica , População Branca/genética
10.
Oral Dis ; 29(5): 2012-2026, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35467063

RESUMO

OBJECTIVES: Methyltransferase-like 14 (METTL14) plays an epigenetic role in various cancer through N6-methyladenosine (m6A) modification. This study sought to analyze the mechanism of METTL14 in oral squamous cell carcinoma (OSCC) cell proliferation. METHODS: Expression levels of METTL14, lncRNA metastasis associated with lung adenocarcinoma transcript 1 (lncRNA MALAT1), microRNA (miR)-224-5p, and histone lysine demethylase 2A (KDM2A) in OSCC tissues (N = 40), and cell lines (FaDu, SCC-25, CAL-27, and SCC-15) were detected. Cell viability and colony formation capacity were assessed. m6A level, stability, and subcellular localization of lncRNA MALAT1 were determined. Nude mouse xenograft tumor assay was performed to confirm the role of METTL14 in vivo. RESULTS: METTL14 and lncRNA MALAT1 were upregulated, and miR-224-5p was downregulated in OSCC tissues and cells. Silencing METTL14 repressed OSCC cell viability and colony formation. Overexpression of MALAT1 and KDM2A or miR-224-5p downregulation reversed the inhibition of silencing METTL14 on OSCC cell proliferation. METTL14 induced m6A modification of MALAT1 to upregulate MALAT1. MALAT1 is comparatively bound to miR-224-5p to promote KDM2A transcription. In vivo, METTL14 promoted tumor growth via regulating MALAT1/miR-224-5p/ KDM2A. CONCLUSIONS: Overall, our findings verified the therapeutic role of silencing METTL14 in OSCC treatment through the MALAT1/miR-224-5p/KDM2A axis.


Assuntos
Carcinoma de Células Escamosas , Proteínas F-Box , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Camundongos , Animais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metiltransferases/genética
11.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230500

RESUMO

Immunotherapy has dramatically improved outcomes for some cancer patients; however, novel treatments are needed for more patients to achieve a long-lasting response. FAP-targeted molecular radiotherapy has shown efficacy in both preclinical and clinical models and has immunomodulatory effects. Here, we studied if combined immunotherapy and radiotherapy could increase antitumor efficacy in murine models of lung cancer and melanoma and interrogated the mechanisms by which these treatments attenuate tumor growth. Using LLC1 and B16F10 murine models of lung cancer and melanoma, respectively, we tested the efficacy of 177Lu-FAPI-04 alone and in combination with immunotherapy. Alone, 177Lu-FAPI-04 significantly reduced tumor growth in both models. In animals with melanoma, combined therapy resulted in tumor regression while lung tumor growth was attenuated, but tumors did not regress. Combined therapy significantly increased caspase-3 and decreased Ki67 compared with immunotherapy alone. Flow cytometry demonstrated that tumor-associated macrophages responded in a tumor-dependent manner which was distinct in animals treated with both therapies compared with either therapy alone. These data demonstrate that 177Lu-FAPI-04 is an effective anticancer therapy for melanoma and lung cancer which mediates effects at least partially through induction of apoptosis and modulation of the immune response. Translational studies with immunotherapy and 177Lu-FAPI-04 are needed to demonstrate the clinical efficacy of this combined regimen.

12.
FASEB J ; 36(2): e22136, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032412

RESUMO

Macrophages are resident myeloid cells in the gingival tissue which control homeostasis and play a pivotal role in orchestrating the immune response in periodontitis. Cell heterogeneity and functional phenotypes of macrophage subpopulations in periodontitis remain elusive. Here, we isolated gingival tissue from periodontitis-affected and healthy sites of patients with and without type 2 diabetes mellitus (T2DM). We then used single-cell RNA-sequencing (scRNA-seq) to define the heterogeneity of tissue-resident macrophages in gingival tissue in health vs. periodontitis. scRNA-seq demonstrated an unforeseen gene expression heterogeneity among macrophages in periodontitis and showed transcriptional and signaling heterogeneity of identified subsets in an independent cohort of patients with periodontitis and T2DM. Our bioinformatic inferences indicated divergent expression profiles in macrophages driven by transcriptional regulators CIITA, RELA, RFX5, and RUNX2. Macrophages in periodontitis expressed both pro-inflammatory and anti-inflammatory markers and their polarization was not mutually exclusive. The majority of macrophages in periodontitis expressed the monocyte lineage marker CD14, indicating their bone marrow lineage. We also found high expression and activation of RELA, a subunit of the NF-κB transcription factor complex, in gingival macrophages of periodontitis patients with T2DM. Our data suggested that heterogeneity and hyperinflammatory activation of macrophages may be relevant to the pathogenesis and outcomes of periodontitis, and may be further augmented in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Periodontite/genética , Periodontite/metabolismo , RNA/genética , Idoso , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Linhagem da Célula/genética , Feminino , Gengiva/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Células Mieloides/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcriptoma/genética
13.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36600652

RESUMO

BACKGROUND: Understanding the role and potential therapeutic targeting of tumor-associated macrophages (TAMs) is crucial to developing new biomarkers and therapeutic strategies for cancer immunotherapies. The epigenetic reader SP140 has emerged as a master regulator of macrophage transcriptional programs; however, its role in the signaling of TAMs and response to immunotherapy has not been investigated. METHODS: We evaluated the correlation between SP140 expression in head and neck squamous cell carcinoma (HNSCC) TAMs and clinical outcomes. We also used complementary bioinformatics and experimental approaches to study the association of SP140 expression with tumor mutation burden, patient survival, immunogenic signature of tumors, and signaling of TAMs. SP140 overexpression or knockdown was implemented to identify the role of SP140 in downstream signaling and production of inflammatory cytokine and chemokines. Chromatin immunoprecipitation and analysis of assay of transposase accessible chromatin sequencing data were used to demonstrate the direct binding of SP140 on the promoters of STAT1. Finally, correlation of SP140 with immune cell infiltrates and response to immune-checkpoint blockade in independent cohorts of HNSCC, metastatic melanoma, and melanoma was assessed. RESULTS: We found that SP140 is highly expressed in TAMs across many cancer types, including HNSCCs. Interestingly, higher expression of SP140 in the tumors was associated with higher tumor mutation burden, improved survival, and a favorable response to immunotherapy. Tumors with high SP140 expression showed enrichment of inflammatory response and interferon-gamma (IFN-γ) pathways in both pan-cancer analysis and HNSCC-specific analysis. Mechanistically, SP140 negatively regulates transcription and phosphorylation of STAT1 and induces IFN-γ signaling. Activating SP140 in macrophages and TAMs induced the proinflammatory macrophage phenotype, increased the antitumor activity of macrophages, and increased the production of IFN-γ and antitumor cytokines and chemokines including interleukin-12 and CXCL10. SP140 expression provided higher sensitivity and specificity to predict antiprogrammed cell death protein 1 immunotherapy response compared with programmed death-ligand 1 in HNSCCs and lung cancer. In metastatic melanoma, higher levels of SP140 were associated with a durable response to immunotherapy, higher immune score estimates, high infiltrations of CD8+ T cells, and inflammatory TAMs. CONCLUSIONS: Our findings suggest that SP140 could serve as both a therapeutic target and a biomarker to identify immunotherapy responders.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Humanos , Interferon gama/metabolismo , Macrófagos Associados a Tumor/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Biomarcadores Tumorais , Melanoma/patologia , Imunoterapia , Fatores de Transcrição/metabolismo , Antígenos Nucleares/metabolismo , Fator de Transcrição STAT1/metabolismo
14.
J Vis Exp ; (190)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622034

RESUMO

Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide, accounting for 90% of all esophageal cancer cases each year, and is the deadliest of all human squamous cell carcinomas. Despite recent progress in defining the molecular changes accompanying ESCC initiation and development, patient prognosis remains poor. The functional annotation of these molecular changes is the necessary next step and requires models that both capture the molecular features of ESCC and can be readily and inexpensively manipulated for functional annotation. Mice treated with the tobacco smoke mimetic 4-nitroquinoline 1-oxide (4NQO) predictably form ESCC and esophageal preneoplasia. Of note, 4NQO lesions also arise in the oral cavity, most commonly in the tongue, as well as the forestomach, which all share the stratified squamous epithelium. However, these mice cannot be simply manipulated for functional hypothesis testing, as generating isogenic mouse models is time- and resource-intensive. Herein, we overcome this limitation by generating single cell-derived three-dimensional (3D) organoids from mice treated with 4NQO to characterize murine ESCC or preneoplastic cells ex vivo. These organoids capture the salient features of ESCC and esophageal preneoplasia, can be cheaply and quickly leveraged to form isogenic models, and can be utilized for syngeneic transplantation experiments. We demonstrate how to generate 3D organoids from normal, preneoplastic, and SCC murine esophageal tissue and maintain and cryopreserve these organoids. The applications of these versatile organoids are broad and include the utilization of genetically engineered mice and further characterization by flow cytometry or immunohistochemistry, the generation of isogeneic organoid lines using CRISPR technologies, and drug screening or syngeneic transplantation. We believe that the widespread adoption of the techniques demonstrated in this protocol will accelerate progress in this field to combat the severe burden of ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Camundongos , Animais , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Organoides/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
15.
Biomolecules ; 11(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680112

RESUMO

BACKGROUND: Alcohol (ethanol) consumption is a major risk factor for head and neck and esophageal squamous cell carcinomas (SCCs). However, how ethanol (EtOH) affects SCC homeostasis is incompletely understood. METHODS: We utilized three-dimensional (3D) organoids and xenograft tumor transplantation models to investigate how EtOH exposure influences intratumoral SCC cell populations including putative cancer stem cells defined by high CD44 expression (CD44H cells). RESULTS: Using 3D organoids generated from SCC cell lines, patient-derived xenograft tumors, and patient biopsies, we found that EtOH is metabolized via alcohol dehydrogenases to induce oxidative stress associated with mitochondrial superoxide generation and mitochondrial depolarization, resulting in apoptosis of the majority of SCC cells within organoids. However, CD44H cells underwent autophagy to negate EtOH-induced mitochondrial dysfunction and apoptosis and were subsequently enriched in organoids and xenograft tumors when exposed to EtOH. Importantly, inhibition of autophagy increased EtOH-mediated apoptosis and reduced CD44H cell enrichment, xenograft tumor growth, and organoid formation rate. CONCLUSIONS: This study provides mechanistic insights into how EtOH may influence SCC cells and establishes autophagy as a potential therapeutic target for the treatment of EtOH-associated SCC.


Assuntos
Autofagia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Etanol/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Receptores de Hialuronatos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos SCID , Mitocôndrias/metabolismo , Organoides/patologia , Oxirredução
16.
Mol Ther Nucleic Acids ; 25: 155-167, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458001

RESUMO

microRNAs (miRs) are small regulatory RNAs that are frequently deregulated in liver disease. Liver fibrosis is characterized by excessive scarring caused by chronic inflammatory processes. In this study, we determined the functional role of miR-132 using a locked nucleic acid (LNA)-anti-miR approach in liver fibrosis. A significant induction in miR-132 levels was found in mice treated with CCl4 and in patients with fibrosis/cirrhosis. Inhibition of miR-132 in mice with LNA-anti-miR-132 caused decreases in CCl4-induced fibrogenesis and inflammatory phenotype. An attenuation in collagen fibers, α SMA, MCP1, IL-1ß, and Cox2 was found in LNA-anti-miR-132-treated mice. CCl4 treatment increased caspase 3 activity and extracellular vesicles (EVs) in control but not in anti-miR-132-treated mice. Inhibition of miR-132 was associated with augmentation of MMP12 in the liver and Kupffer cells. In vivo and in vitro studies suggest miR-132 targets SIRT1 and inflammatory genes. Using tumor cancer genome atlas data, an increase in miR-132 was found in hepatocellular carcinoma (HCC). Increased miR-132 levels were associated with fibrogenic genes, higher tumor grade and stage, and unfavorable survival in HCC patients. Therapeutic inhibition of miR-132 might be a new approach to alleviate liver fibrosis, and treatment efficacy can be monitored by observing EV shedding.

17.
J Clin Periodontol ; 48(9): 1152-1164, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101221

RESUMO

AIM: We investigated differential DNA methylation in gingival tissues in periodontal health, gingivitis, and periodontitis, and its association with differential mRNA expression. MATERIALS AND METHODS: Gingival tissues were harvested from individuals and sites with clinically healthy and intact periodontium, gingivitis, and periodontitis. Samples were processed for differential DNA methylation and mRNA expression using the IlluminaEPIC (850 K) and the IlluminaHiSeq2000 platforms, respectively. Across the three phenotypes, we identified differentially methylated CpG sites and regions, differentially expressed genes (DEGs), and genes with concomitant differential methylation at their promoters and expression were identified. The findings were validated using our earlier databases using HG-U133Plus2.0Affymetrix microarrays and Illumina (450 K) methylation arrays. RESULTS: We observed 43,631 differentially methylated positions (DMPs) between periodontitis and health, and 536 DMPs between gingivitis and health (FDR < 0.05). On the mRNA level, statistically significant DEGs were observed only between periodontitis and health (n = 126). Twelve DEGs between periodontitis and health (DCC, KCNA3, KCNA2, RIMS2, HOXB7, PNOC, IRX1, JSRP1, TBX1, OPCML, CECR1, SCN4B) were also differentially methylated between the two phenotypes. Spearman correlations between methylation and expression in the EPIC/mRNAseq dataset were largely replicated in the 450 K/Affymetrix datasets. CONCLUSIONS: Concomitant study of DNA methylation and gene expression patterns may identify genes whose expression is epigenetically regulated in periodontitis.


Assuntos
Gengivite , Periodontite , Moléculas de Adesão Celular , Metilação de DNA/genética , Proteínas Ligadas por GPI , Gengivite/genética , Proteínas de Homeodomínio , Humanos , Periodontite/genética , Periodonto , RNA Mensageiro/genética , Fatores de Transcrição
18.
J Exp Clin Cancer Res ; 40(1): 70, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596979

RESUMO

BACKGROUND: MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS: Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS: Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS: Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Animais , Apoptose/fisiologia , Regulação para Baixo , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Xenoenxertos , Humanos , Evasão da Resposta Imune , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/imunologia , Pessoa de Meia-Idade , Oncogenes , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Evasão Tumoral
19.
J Oncol ; 2021: 8292453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510789

RESUMO

We have previously constructed a novel microRNA (miRNA)-based prognostic model and cancer-specific mortality risk score formula to predict survival outcome in oral squamous cell carcinoma (OSCC) patients who are already categorized into "early-stage" by the TNM staging system. A total of 836 early-stage OSCC patients were assigned the mortality risk scores. We evaluated the efficacy of various treatment regimens in terms of survival benefit compared to surgery only in patients stratified into high (risk score ≥0) versus low (risk score <0) mortality risk categories. For the high-risk group, surgery with neck dissection significantly improved the 5-year survival to 75% from 46% with surgery only (p < 0.001); a Cox proportional hazard model on time-to-death demonstrated a hazard ratio of 0.37 for surgery with neck dissection (95% CI: 0.2-0.6; p=0.0005). For the low-risk group, surgery only was the treatment of choice associated with 5-year survival benefit. Regardless of treatment selected, those with risk score ≥2 may benefit from additional therapy to prevent cancer relapse. We also identified hTERT (human telomerase reverse transcriptase) as a gene target common to the prognostic miRNAs. There was 22-fold increase in the hTERT expression level in patients with risk score ≥2 compared to healthy controls (p < 0.0005). Overexpression of hTERT was also observed in the patient-derived OSCC organoid compared to that of normal organoid. The DNA cancer vaccine that targets hTERT-expressing cells currently undergoing rigorous clinical evaluation for other tumors can be repurposed to prevent cancer recurrence in these high-risk early-stage oral cancer patients.

20.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007968

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound vesicles secreted by most cell types during both physiologic conditions as well in response to cellular stress. EVs play an important role in intercellular communication and are emerging as key players in tumor immunology. Tumor-derived EVs (TDEs) harbor a diverse array of tumor neoantigens and contain unique molecular signature that is reflective of tumor's underlying genetic complexity. As such they offer a glimpse into the immune tumor microenvironment (TME) and have the potential to be a novel, minimally invasive biomarker for cancer immunotherapy. Immune checkpoint inhibitors (ICI), such as anti- programmed death-1(PD-1) and its ligand (PD-L1) antibodies, have revolutionized the treatment of a wide variety of solid tumors including head and neck squamous cell carcinoma, urothelial carcinoma, melanoma, non-small cell lung cancer, and others. Typically, an invasive tissue biopsy is required both for histologic diagnosis and next-generation sequencing efforts; the latter have become more widespread in daily clinical practice. There is an unmet need for noninvasive or minimally invasive (e.g., plasma-based) biomarkers both for diagnosis and treatment monitoring. Targeted analysis of EVs in biospecimens, such as plasma and saliva could serve this purpose by potentially obviating the need for tissue sample. In this review, we describe the current challenges of biomarkers in cancer immunotherapy as well as the mechanistic role of TDEs in modulating antitumor immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA