Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Physiol ; 63: 9-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548612

RESUMO

Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function.


Assuntos
Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Triatoma/genética , Sequência de Aminoácidos , Animais , Carboxipeptidases/química , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Distribuição Tecidual , Triatoma/metabolismo
2.
PLoS One ; 4(11): e7854, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19924237

RESUMO

BACKGROUND: Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. METHODOLOGY/PRINCIPAL FINDINGS: Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a(3) levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H(2)O(2) formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. CONCLUSION: Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding.


Assuntos
Aedes/fisiologia , Sangue/metabolismo , Voo Animal , Mitocôndrias Musculares/metabolismo , Aedes/metabolismo , Ração Animal , Ciências da Nutrição Animal , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/química , Microscopia Eletrônica de Transmissão/métodos , Modelos Biológicos , Oxirredução , Consumo de Oxigênio , RNA/metabolismo , Coelhos , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA