Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Imaging Behav ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530517

RESUMO

Reactive steps are rapid responses after balance challenges. People with Parkinson's Disease (PwPD) demonstrate impaired reactive stepping, increasing fall-risk. Although PwPD can improve steps through practice, the neural mechanisms contributing to improved reactive stepping are poorly understood. This study investigated white-matter correlates of responsiveness to reactive step training in PwPD. In an eighteen-week multiple-baseline study, participants (n = 22) underwent baseline assessments (B1 and B2 two-weeks apart), a two-week training protocol, and post-training assessments immediately (P1) and two-months (P2) post-training. Assessments involved three backward reactive step trials, measuring anterior-posterior margin of stability (AP MOS), step length, and step latency. Tract-Based Spatial Statistics correlated white-matter integrity (fractional anisotropy (FA) and radial diffusivity (RD)) with retained (P2-B2) and immediate improvements (P1-B2) in stepping. Significant and sustained improvements in step length and AP MOS were observed. Greater retention of step length improvement correlated with increased FA in the left anterior thalamic radiation (ATR), left posterior thalamic radiation (PTR), left superior longitudinal fasciculus (SLF), and right inferior longitudinal fasciculus (ILF). Step latency retention was associated with lower RD in the left posterior corona radiata and left PTR. Immediate improvements in AP MOS correlated with increased FA of the right ILF, right SLF, and right corticospinal tract. Immediate step length improvements were associated with increased FA in right and left ATR and right SLF. These findings highlight the importance of white-matter microstructural integrity in motor learning and retention processes in PD and could aid in identifying individuals with PD who would benefit most from balance rehabilitation.

2.
J Neurol Phys Ther ; 48(3): 165-173, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489661

RESUMO

BACKGROUND AND PURPOSE: Reactive balance training improves reactive postural control in people with Parkinson disease (PwPD). However, the extent to which reactive balance training generalizes to a novel, unpracticed reactive balance task is unknown. This study aimed to determine whether reactive training stepping through support surface translations can be generalized to an unpracticed, instrumented tether-release task. METHODS: Twenty-five PwPD (70.52 years ± 7.15; Hoehn and Yahr range 1-3) completed a multiple baseline, open-label, uncontrolled pre-post intervention study. Stepping was trained through a 2-week (6-session) intervention with repeated support surface translations. Performance on an untrained tether-release task (generalization task) was measured at 2 baseline assessments (B1 and B2, 2 weeks apart), immediately after the intervention (P1), and 2 months after training (P2). The tether-release task outcomes were the anterior-posterior margin of stability (MOS), step length, and step latency during backward and forward steps. RESULTS: After support surface translation practice, tether-release stepping performance improved in MOS, step length, and step latency for both backward and forward steps compared to baseline ( P < 0.05). Improvements in MOS and step length during backward and forward steps in the tether-release task, respectively, were related to stepping changes in the practiced task. However, the improvements in the generalization task were not retained for 2 months. DISCUSSION AND CONCLUSIONS: These findings support short-term generalization from trained balance tasks to novel, untrained tasks. These findings contribute to our understanding of the effects and generalization of reactive step training in PwPD. VIDEO ABSTRACT AVAILABLE: for more insights from the authors (see the Video, Supplemental Digital Content available at http://links.lww.com/JNPT/A465 ).


Assuntos
Doença de Parkinson , Equilíbrio Postural , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Terapia por Exercício , Generalização Psicológica/fisiologia
3.
Environ Res Lett ; 15(8)2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38585625

RESUMO

Understanding how climate change and demographic factors may shape future population exposure to viruses such as Zika, dengue, or chikungunya, transmitted by Aedes mosquitoes is essential to improving public health preparedness. In this study, we combine projections of cumulative monthly Aedes-borne virus transmission risk with spatially explicit population projections for vulnerable demographic groups to explore future county-level population exposure across the conterminous United States. We employ a scenario matrix-combinations of climate scenarios (Representative Concentration Pathways) and socioeconomic scenarios (Shared Socioeconomic Pathways)-to assess the full range of uncertainty in emissions, socioeconomic development, and demographic change. Human exposure is projected to increase under most scenarios, up to + 177% at the national scale in 2080 under SSP5*RCP8.5 relative to a historical baseline. Projected exposure changes are predominantly driven by population changes in vulnerable demographic groups, although climate change is also important, particularly in the western region where future exposure would be about 30% lower under RCP2.6 compared to RCP8.5. The results emphasize the crucial role that socioeconomic and demographic change play in shaping future population vulnerability and exposure to Aedes-borne virus transmission risk in the United States, and underline the importance of including socioeconomic scenarios in projections of climate-related vector-borne disease impacts.

4.
J Agric Biol Environ Stat ; 17(3): 442-460, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38179552

RESUMO

Bacterial (meningococcal) meningitis is a devastating infectious disease with outbreaks occurring annually during the dry season in locations within the 'Meningitis Belt', a region in sub-Saharan Africa stretching from Ethiopia to Senegal. Meningococcal meningitis occurs from December to May in the Sahel with large epidemics every 5-10 years and attack rates of up to 1000 infections per 100,000 people. High temperatures coupled with low humidity may favor the conversion of carriage to disease as the meningococcal bacteria in the nose and throat are better able to cross the mucosal membranes into the blood stream. Similarly, respiratory diseases such as influenza and pneumonia might weaken the immune defenses and add to the mucosa damage. Although the transmission dynamics are poorly understood, outbreaks regularly end with the onset of the rainy season and may begin anew with the following dry season. In this paper, we employ a generalized additive modeling approach to assess the association between number of reported meningitis cases and a set of weather variables (relative humidity, rain, wind, sunshine, maximum and minimum temperature). The association is adjusted for air quality (dust, carbon monoxide), as well as varying degrees of unobserved time-varying confounding processes that co-vary with both the disease incidence and weather. We present the analysis of monthly reported meningitis counts in Navrongo, Ghana, from 1998-2008.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA