Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1352717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605986

RESUMO

This study developed a new burn wound dressing based on core-shell nanofibers that co-deliver antibiotic and antioxidant drugs. For this purpose, poly(ethylene oxide) (PEO)-chitosan (CS)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell nanofibers were fabricated through co-axial electrospinning technique. Antibiotic levofloxacin (LEV) and antioxidant quercetin (QS) were incorporated into the core and shell parts of PEO-CS/PLGA nanofibers, respectively. The drugs could bond to the polymer chains through hydrogen bonding, leading to their steady release for 168 h. An in vitro drug release study showed a burst effect followed by sustained release of LEV and QS from the nanofibers due to the Fickian diffusion. The NIH 3T3 fibroblast cell viability of the drug loaded core-shell nanofibers was comparable to that in the control (tissue culture polystyrene) implying biocompatibility of the nanofibers and their cell supportive role. However, there was no significant difference in cell viability between the drug loaded and drug free core-shell nanofibers. According to in vivo experiments, PEO-CS-LEV/PLGA-QS core-shell nanofibers could accelerate the healing process of a burn wound compared to a sterile gauze. Thanks to the synergistic therapeutic effect of LEV and QS, a significantly higher wound closure rate was recorded for the drug loaded core-shell nanofibrous dressing than the drug free nanofibers and control. Conclusively, PEO-CS-LEV/PLGA-QS core-shell nanofibers were shown to be a promising wound healing material that could drive the healing cascade through local co-delivery of LEV and QS to burn wounds.

2.
Regen Biomater ; 11: rbad105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173772

RESUMO

Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here, we report the synthesis of a series of binary B2O3-CaO borate BGs (CaO ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in B2O3-CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by increasing CaO content. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B2O3/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B2O3 were beneficial for pro-angiogenic activity. The synthesized sol-gel-derived borate BGs are promising materials for developing advanced wound healing dressings, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities.

3.
RSC Adv ; 13(23): 15960-15974, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37250225

RESUMO

This study seeks to simulate both the chemistry and piezoelectricity of bone by synthesizing electroconductive silane-modified gelatin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) scaffolds using the freeze drying technique. In order to enhance hydrophilicity, cell interaction, and biomineralization, the scaffolds were functionalized with polydopamine (PDA) inspired by mussels. Physicochemical, electrical, and mechanical analyses were conducted on the scaffolds, as well as in vitro evaluations using the osteosarcoma cell line MG-63. It was found that scaffolds had interconnected porous structures, so the PDA layer formation reduced the size of pores while maintaining scaffold uniformity. PDA functionalization reduced the electrical resistance of the constructs while improving their hydrophilicity, compressive strength, and modulus. As a result of the PDA functionalization and the use of silane coupling agents, higher stability and durability were achieved as well as an improvement in biomineralization capability after being soaked in SBF solution for a month. Additionally, the PDA coating enabled the constructs to enhance viability, adhesion, and proliferation of MG-63 cells, as well as to express alkaline phosphatase and deposit HA, indicating that scaffolds can be used for bone regeneration. Therefore, the PDA-coated scaffolds developed in this study and the non-toxic performance of PEDOT:PSS present a promising approach for further in vitro and in vivo studies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37155412

RESUMO

In this study, a wound dressing composed of an alginate dialdehyde-gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles stiffened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more effective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing.

5.
Front Bioeng Biotechnol ; 10: 940070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003531

RESUMO

This study utilized extrusion-based 3D printing technology to fabricate calcium-cross-linked alginate dialdehyde-gelatin scaffolds for bone regeneration. The surface of polymeric constructs was modified with mussel-derived polydopamine (PDA) in order to induce biomineralization, increase hydrophilicity, and enhance cell interactions. Microscopic observations revealed that the PDA layer homogeneously coated the surface and did not appear to induce any distinct change in the microstructure of the scaffolds. The PDA-functionalized scaffolds were more mechanically stable (compression strength of 0.69 ± 0.02 MPa) and hydrophilic (contact angle of 26) than non-modified scaffolds. PDA-decorated ADA-GEL scaffolds demonstrated greater durability. As result of the 18-days immersion in simulated body fluid solution, the PDA-coated scaffolds showed satisfactory biomineralization. Based on theoretical energy analysis, it was shown that the scaffolds coated with PDA interact spontaneously with osteocalcin and osteomodulin (binding energy values of -35.95 kJ mol-1 and -46.39 kJ mol-1, respectively), resulting in the formation of a protein layer on the surface, suggesting applications in bone repair. PDA-coated ADA-GEL scaffolds are capable of supporting osteosarcoma MG-63 cell adhesion, viability (140.18% after 7 days), and proliferation. In addition to increased alkaline phosphatase secretion, osteoimage intensity also increased, indicating that the scaffolds could potentially induce bone regeneration. As a consequence, the present results confirm that 3D printed PDA-coated scaffolds constitute an intriguing novel approach for bone tissue engineering.

6.
Macromol Biosci ; 22(9): e2200113, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35795888

RESUMO

A novel biomaterial comprising alginate dialdehyde-gelatine (ADA-GEL) hydrogel augmented by lysozyme loaded mesoporous cerium doped silica-calcia nanoparticles (Lys-Ce-MSNs) is 3D printed to create bioactive scaffolds. Lys-Ce-MSNs raise the mechanical stiffness of the hydrogel composite scaffold and induce surface apatite mineralization, when the scaffold is immersed in simulated body fluid (SBF). Moreover, the scaffolds can co-deliver bone healing (Ca and Si) and antioxidant ions (Ce), and Lys to achieve antibacterial (and potentially anticancer) properties. The nanocomposite hydrogel scaffolds can hold and deliver Lys steadily. Based on the in vitro results, the hydrogel nanocomposite containing Lys assured improved pre-osteoblast cell (MC3T3-E1) proliferation, adhesion, and differentiation, thanks to the biocompatibility of ADA-GEL, bioactivity of Ce-MSNs, and the stabilizing effect of Lys on the scaffold structure. On the other hand, the proliferation level of MG63 osteosarcoma cells decreased, likely due to the effect of Lys. Last but not least, cooperatively, alongside gentamicin (GEN), Lys brought about a proper antibacterial efficiency to the hydrogel nanocomposite scaffold against gram-positive and gram-negative bacteria. Taken together, ADA-GEL/Lys-Ce-MSN nanocomposite holds great promise for 3D printing of multifunctional hydrogel bone tissue engineering (BTE) scaffolds, able to induce bone regeneration, address infection, and potentially inhibit tumor formation and growth.


Assuntos
Cério , Nanopartículas , Alginatos/química , Alginatos/farmacologia , Antibacterianos/farmacologia , Compostos de Cálcio , Cério/farmacologia , Gelatina/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hidrogéis/farmacologia , Muramidase/farmacologia , Nanopartículas/química , Osteogênese , Óxidos , Impressão Tridimensional , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Small ; 18(12): e2104996, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102718

RESUMO

Bioprinting has seen significant progress in recent years for the fabrication of bionic tissues with high complexity. However, it remains challenging to develop cell-laden bioinks exhibiting superior physiochemical properties and bio-functionality. In this study, a multifunctional nanocomposite bioink is developed based on amine-functionalized copper (Cu)-doped mesoporous bioactive glass nanoparticles (ACuMBGNs) and a hydrogel formulation relying on dynamic covalent chemistry composed of alginate dialdehyde (oxidized alginate) and gelatin, with favorable rheological properties, improved shape fidelity, and structural stability for extrusion-based bioprinting. The reversible dynamic microenvironment in combination with the impact of cell-adhesive ligands introduced by aminated particles enables the rapid spreading (within 3 days) and high survival (>90%) of embedded human osteosarcoma cells and immortalized mouse bone marrow-derived stroma cells. Osteogenic differentiation of primary mouse bone marrow stromal stem cells (BMSCs) and angiogenesis are promoted in the bioprinted alginate dialdehyde-gelatin (ADA-GEL or AG)-ACuMBGN scaffolds without additional growth factors in vitro, which is likely due to ion stimulation from the incorporated nanoparticles and possibly due to cell mechanosensing in the dynamic matrix. In conclusion, it is envisioned that these nanocomposite bioinks can serve as promising platforms for bioprinting complex 3D matrix environments providing superior physiochemical and biological performance for bone tissue engineering.


Assuntos
Bioimpressão , Nanocompostos , Nanopartículas , Animais , Hidrogéis/química , Camundongos , Nanocompostos/química , Nanopartículas/química , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
8.
Acta Biomater ; 142: 208-220, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167953

RESUMO

In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. STATEMENT OF SIGNIFICANCE: In this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Alginatos/farmacologia , Antineoplásicos/farmacologia , Cápsulas , Movimento Celular , Cisplatino/farmacologia , Resistência a Medicamentos , Células Endoteliais , Feminino , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Hipóxia , Reprodutibilidade dos Testes
9.
Mater Sci Eng C Mater Biol Appl ; 131: 112470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857258

RESUMO

3D printing enables a better control over the microstructure of bone restoring constructs, addresses the challenges seen in the preparation of patient-specific bone scaffolds, and overcomes the bottlenecks that can appear in delivering drugs/growth factors promoting bone regeneration. Here, 3D printing is employed for the fabrication of an osteogenic construct made of hydrogel nanocomposites. Alginate dialdehyde-gelatin (ADA-GEL) hydrogel is reinforced by the incorporation of bioactive glass nanoparticles, i.e. mesoporous silica-calcia nanoparticles (MSNs), in two types of drug (icariin) loading. The composites hydrogel is printed as superhydrated composite constructs in a grid structure. The MSNs not only improve the mechanical stiffness of the constructs but also induce formation of an apatite layer when the construct is immersed in simulated body fluid (SBF), thereby promoting cell adhesion and proliferation. The nanocomposite constructs can hold and deliver icariin efficiently, regardless of its incorporation mode, either as loaded into the MSNs or freely distributed within the hydrogel. Biocompatibility tests showed that the hydrogel nanocomposites assure enhanced osteoblast proliferation, adhesion, and differentiation. Such optimum biological properties stem from the superior biocompatibility of ADA-GEL, the bioactivity of the MSNs, and the supportive effect of icariin in relation to cell proliferation and differentiation. Taken together, given the achieved structural and biological properties and effective drug delivery capability, the hydrogel nanocomposites show promising potential for bone tissue engineering.


Assuntos
Gelatina , Nanopartículas , Alginatos , Flavonoides , Humanos , Hidrogéis , Impressão Tridimensional , Dióxido de Silício , Engenharia Tecidual , Alicerces Teciduais
10.
Adv Biol (Weinh) ; 5(7): e2000349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960743

RESUMO

As 2D surfaces fail to resemble the tumoral milieu, current discussions are focused on which 3D cell culture strategy may better lead the cells to express in vitro most of the malignant hints described in vivo. In this study, this question is assessed by analyzing the full genetic profile of MCF7 cells cultured either as 3D spheroids-considered as "gold standard" for in vitro cancer research- or immobilized in 3D tumor-like microcapsules, by RNA-Seq and transcriptomic methods, allowing to discriminate at big-data scale, which in vitro strategy can better resemble most of the malignant features described in neoplastic diseases. The results clearly show that mechanical stress, rather than 3D morphology only, stimulates most of the biological processes involved in cancer pathogenicity, such as cytoskeletal organization, migration, and stemness. Furthermore, cells entrapped in hydrogel-based scaffolds are likely expressing other physiological hints described in malignancy, such as the upregulated expression of metalloproteinases or the resistance to anticancer drugs, among others. According to the knowledge, this study represents the first attempt to answer which 3D experimental system can better mimic the neoplastic architecture in vitro, emphasizing the relevance of confinement in cancer pathogenicity, which can be easily achieved by using hydrogel-based matrices.


Assuntos
Neoplasias , Esferoides Celulares , Cápsulas , Técnicas de Cultura de Células , Humanos , Hidrogéis , Neoplasias/genética , Estresse Mecânico
11.
Mater Sci Eng C Mater Biol Appl ; 123: 111965, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812593

RESUMO

For the first time, a biohybrid nanofibrous wound dressing is developed via green electrospinning of a blend solution of bovine serum albumin (BSA) (1 and 3 wt%) and polycaprolactone (PCL). In such a system, the components are miscible and interact through hydrogen bonding between the carbonyl group of PCL and the amine group of BSA, as verified by ATR-FTIR. As a result, the biohybrid nanofibers show a superior elastic modulus and elongation (300% and 58%, respectively) compared with the neat PCL nanofibers. The included protein induces a hydrophilicity effect to the PCL nanofibers, notably at the higher BSA content (3 wt%). In contrast to the neat nanofibers, the biohybrid ones are bioactive and encourage formation of biominerals (made of amorphous calcium carbonate) on the surface, after immersion in simulated body fluid (SBF). Based on the WST-8 cell viability tests, NIH3T3 fibroblast cells were seen to properly interact with the biohybrid mats and to proliferate in their proximity. SEM images show that the cells largely adhere onto such nanofibers even more than they do on the neat ones and adopt a flattened and stretched shape. In addition, the live/dead assay and phalloidin/DAPI staining assay confirm large cell viability and normal cell morphology on the biohybrid nanofiber mats after 4 days incubation. Taken together, BSA/PCL nanofibers are able to offer optimum mechanical properties (elasticity) as well as mineralization which can potentially stimulate the wound healing process, and can be considered a suitable candidate for wound dressing applications.


Assuntos
Nanofibras , Animais , Bandagens , Biomimética , Camundongos , Células NIH 3T3 , Poliésteres , Soroalbumina Bovina
12.
Biol Trace Elem Res ; 170(2): 271-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26315303

RESUMO

The current study was conducted to evaluate the effects of zinc supplementation on endocrine outcomes, biomarkers of inflammation, and oxidative stress in patients with polycystic ovary syndrome (PCOS). This study was a randomized double-blind, placebo-controlled trial. Forty-eight women (18-40 years) with PCOS diagnosed according to Rotterdam criteria were randomly assigned to receive either 220 mg zinc sulfate (containing 50 mg zinc) (group 1; n = 24) and/or placebo (group 2; n = 24) for 8 weeks. Hormonal profiles, biomarkers of inflammation, and oxidative stress were measured at study baseline and after 8-week intervention. After 8 weeks of intervention, alopecia (41.7 vs. 12.5%, P = 0.02) decreased compared with the placebo. Additionally, patients who received zinc supplements had significantly decreased hirsutism (modified Ferriman-Gallwey scores) (-1.71 ± 0.99 vs. -0.29 ± 0.95, P < 0.001) and plasma malondialdehyde (MDA) levels (-0.09 ± 1.31 vs. +2.34 ± 5.53 µmol/L, P = 0.04) compared with the placebo. A trend toward a significant effect of zinc intake on reducing high-sensitivity C-reactive protein (hs-CRP) levels (P = 0.06) was also observed. We did observe no significant changes of zinc supplementation on hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress. In conclusion, using 50 mg/day elemental zinc for 8 weeks among PCOS women had beneficial effects on alopecia, hirsutism, and plasma MDA levels; however, it did not affect hormonal profiles, inflammatory cytokines, and other biomarkers of oxidative stress.


Assuntos
Suplementos Nutricionais , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/sangue , Zinco/administração & dosagem , Adolescente , Adulto , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Citocinas/metabolismo , Método Duplo-Cego , Feminino , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Malondialdeído/sangue , Síndrome do Ovário Policístico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA