Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(1): 88-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985838

RESUMO

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.

2.
Light Sci Appl ; 12(1): 276, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985751

RESUMO

Hot carrier cooling is slowed down upon alloying tin in lead-halide perovskite nanocrystals through the engineering of carrier-phonon and carrier-defect interactions.

3.
ACS Nano ; 17(7): 6638-6648, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939330

RESUMO

The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.

4.
ACS Nano ; 17(7): 6330-6340, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939760

RESUMO

Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.

5.
Adv Mater ; 34(23): e2110568, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355335

RESUMO

Strain-engineering in 2D transition metal dichalcogenide (TMD) semiconductors has garnered intense research interest in tailoring the optical properties via strain-induced modifications of the electronic bands in TMDs, while its impact on the exciton dynamics remains less understood. To address this, an extensive study of transient optical absorption (TA) of both W- and Mo-based single-crystalline monolayer TMDs grown by a recently developed laser-assisted evaporation method is performed. All spectral features of the monolayers as grown on fused silica substrates exhibit appreciable redshifts relating to the existence of strain due to growth conditions. Moreover, these systems exhibit a dramatic slowing down of exciton dynamics (100s of picoseconds to few nanoseconds) with an increase in carrier densities, which strongly contrasts with the monolayers in their freestanding form as well as in comparison with more traditionally grown TMDs. The observations are related to the modifications of the electronic bands as expected from the strain and associated population of the intervalley dark excitons that can now interplay with intravalley excitations. These findings are consistent across both the Mo- and W-based TMD families, providing key information about the influence of the growth conditions on the nature of optical excitations and fostering emerging optoelectronic applications of monolayer TMDs.

6.
ACS Nano ; 16(2): 3017-3026, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35129951

RESUMO

Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an "inverted" QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton-exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.

7.
J Phys Chem Lett ; 11(3): 1112-1119, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958009

RESUMO

Time-resolved photoluminescence (PL) and femtosecond transient absorption (TA) spectroscopy are employed to study the photoexcitation dynamics in a highly emissive two-dimensional perovskite compound (en)4Pb2Br9·3Br with the ethylene diammonium (en) spacer. We find that while the PL kinetics is substantially T-dependent over the whole range of studied temperatures T ∼ 77-350 K, the PL quantum yield remains remarkably nearly T-independent up to T ∼ 280-290 K, appreciably decreasing only at higher temperatures. Considerable differences are also revealed between the TA spectra and the responses to the excitation power at low and at room temperatures. Numerical solutions of Onsager-Braun-type kinetic-diffusion equations illustrate that the salient features of the experimental observations are consistent with the picture of a T-dependent dynamic interplay between tightly bound emissive excitons and larger-size, loosely bound, nonemissive geminate charge pairs arising already at earlier relaxation times. The geminate pairs play the role of "reservoir" states providing a delayed feeding into the emitting excitons, thus giving rise to the longer-time PL decay components and accounting for a stable PL output at lower temperatures. At higher temperatures, the propensity for thermal dissociation of excitons and bound pairs increases, leading subsequently to the precipitous decrease of the PL.

8.
Nanoscale ; 11(20): 9796-9818, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070653

RESUMO

Perovskite nanocrystals (NCs), especially those based on cesium lead halides, have emerged in recent years as highly promising materials for efficient solar cells and photonic applications. The key to realization of full potential of these materials lies however in the molecular level understanding of the processes triggered by light. Herein we highlight the knowledge gained from photophysical investigations on these NCs of various sizes and compositions employing primarily the femtosecond pump-probe technique. We show how spectral and temporal characterization of the photo-induced transients provide insight into the mechanism and dynamics of relaxation of hot and thermalized charge carriers through their recombination and trapping. We discuss how the multiple excitons including the charged ones (trions), generated using high pump fluence or photon energy, recombine through the Auger-assisted process. We discussed the harvesting of hot carriers prior to their cooling and band-edge carriers from these perovskite NCs to wide band-gap metal oxides, metal chalcogenide NCs and molecular acceptors. How perovskites can influence the charge carrier dynamics in composites of organic and inorganic semiconductors is also discussed.

9.
J Phys Chem Lett ; 9(13): 3673-3679, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29920101

RESUMO

Recent studies show that perovskites (ABX3-type) comprising mixed A or B cation and/or mixed halide (X) are more stable and efficient materials for photovoltaic applications than their respective pure forms. Herein we report how doping of a small quantity of formamidinium and/or chloride ion influences the single and multiexciton dynamics of CsPbI3 nanocrystals (NCs). With the help of ultrafast pump-probe spectroscopic measurements, we show that chloride doping can enhance the biexciton lifetime of the system significantly by slowing down the Auger recombination (AR) process. The measured biexciton AR time scale (∼195-205 ps) in some of these NCs is the longest among those reported to date for any similar size perovskites. We further demonstrate that suppression of the AR rate and consequent lengthening of biexciton lifetime allow harvest of these species for their utilization through rapid (18-45 ps) electron transfer to fullerene. The insights obtained from this study are expected to help design more efficient doped perovskites for energy conversion purposes.

10.
ACS Omega ; 3(3): 3022-3035, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458568

RESUMO

A new series of conjugated donor-π-acceptor type of 2,6-bis(pyrazolyl)pyridine derivatives (compounds IK-(3-9)) have been synthesized via Horner-Wadsworth-Emmons (HWE) reaction, starting from a common phosphonate precursor and diverse donor aromatic aldehydes and characterized by routine spectral analysis including elemental analysis. Compound IK-2, one of the starting precursors, and molecule IK-3, the first member of the donor-π-acceptor series, are additionally characterized by single-crystal X-ray structure determination. Compounds IK-2 and IK-3 are crystallized in P1̅ (triclinic) and P21/c (monoclinic) space groups, respectively. The absorption maxima in the electronic spectra of the title compounds shift mainly due to intramolecular charge transfer (ICT) between different donor (dibutyl and cyclic pyrrolidine) groups and the acceptor moiety [2,6-bis(pyrazolyl) pyridine]. Solution-state emission spectral studies of all these compounds show large solvent sensitive behavior with significant amounts of Stokes shifts. The large solvent dependence of the emission indicates that the excited state is stabilized in more polar solvents due to the ICT. All chromophores exhibit solid-state fluorescence behavior except compound IK-7. The role of the position and nature of the donor functionalities in the conjugated backbone of overall donor moiety of compounds IK-(3-9), on the electronic absorption properties of the title chromophores has been demonstrated, which has further been corroborated by density functional theory (DFT) and time-dependent DFT (TDDFT) computational studies. The emission spectral results of compounds IK-3, IK-5, and IK-7 have also been supported by the DFT and TDDFT calculations. A fluorescence lifetime study on this series also shows that the excited states are stabilized in more polar solvents. Finally, one of the chromophores (chromophore IK-4) in the title series has been shown to act as a selective molecular sensor (turn-off switch) for the Cu(II) ion.

11.
Nanoscale ; 10(2): 639-645, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238789

RESUMO

Excitation of semiconductor quantum dots (QDs) by photons possessing energy higher than the band-gap creates a hot electron-hole pair, which releases its excess energy as waste heat or under certain conditions (when hν > 2Eg) produces multiple excitons. Extraction of these hot carriers and multiple excitons is one of the key strategies for enhancing the efficiency of QD-based photovoltaic devices. However, this is a difficult task as competing carrier cooling and relaxation of multiple excitons (through Auger recombination) are ultrafast processes. Herein, we study the potential of all-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br) as harvesters of these short-lived species from photo-excited CdTe QDs. The femtosecond transient absorption measurements show CsPbX3 mediated extraction of both hot and thermalized electrons of the QDs (under a low pump power) and (under a high pump fluence) extraction of multiple excitons prior to their Auger assisted recombination. A faster timescale of thermalized electron transfer (∼2 ps) and a higher extraction efficiency of hot electrons (∼60%) are observed in the presence of CsPbBr3. These observations demonstrate the potential of all-inorganic perovskite NCs in the extraction of these short-lived energy rich species implying that complexes of the QDs and perovskite NCs are better suited for improving the efficiency of QD-sensitized solar cells.

12.
Nanoscale ; 9(43): 16722-16727, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29067392

RESUMO

Mn-Doped perovskite nanocrystals (NCs) are a new class of materials offering exciting opportunities to control over their optical and magnetic properties. Herein, we report a series of Mn-doped CsPbCl3 NCs exhibiting a tunable Mn photoluminescence (PL) band with a PL peak wavelength pushed up to 625 nm and tuned over a range of 40 nm, the largest achieved so far, by only varying the Mn content. The X-band EPR data and Mn PL decay behaviour of the NCs reveal that the exchange interaction between Mn2+ ions is mainly responsible for a large shift of the Mn PL band. Ultrafast pump-probe measurements show that exciton-dopant energy transfer in these NCs is slower (∼50-100 ps) than trapping of the carriers (∼8-10 ps) in the host lattice. The large PL tuning reported here along with the insights into the mechanism of tuning and carrier dynamics are expected to boost the potential of Mn-doped CsPbCl3 NCs in light-powered devices.

13.
Nanoscale ; 9(5): 1878-1885, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28094394

RESUMO

Understanding the nature and dynamics of the photo-induced transients of all-inorganic perovskite nanocrystals (NCs) is key to their exploitation in potential applications. In order to determine the nature of charge carriers, their deactivation pathways and dynamics, the photo-induced transients of CsPbBr3, CsPbBr2I, CsPbBr1.5I1.5 and CsPbI3 NCs are spectrally and temporally characterized employing a combination of femtosecond transient absorption (TA) and photoluminescence (PL) up-conversion techniques and global analysis of the data. The results provide distinct identities of the excitons and free charge carriers and distinguish the hot charge carriers from the cold ones. The carrier trapping is attributed to the electrons and their dynamics is unaffected in mixed halide perovskites. The excitation energy dependence of the TA dynamics suggests that the trap states are shallow in nature and mainly limited near the band-edge level. In mixed halide perovskites, an increase in the iodine content leads to hole trapping in a short time scale (<5 ps). The insights obtained from this study are likely to be helpful for tuning the photo-response of these substances and their better utilization in light-based applications.

14.
Nanoscale ; 8(29): 14250-6, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396603

RESUMO

In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.

15.
J Phys Chem Lett ; 7(2): 266-71, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26727624

RESUMO

Study of the emission behavior of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I as a function of the excitation power employing fluorescence correlation spectroscopy and conventional techniques reveals fluorescence blinking in the microsecond time scale and photoinduced emission enhancement. The observation provides insight into the radiative and nonradiative deactivation pathways of these promising substances. Because both blinking and photoactivation processes are intimately linked to the charge separation efficiency and dynamics of the nanocrystals, these key findings are likely to be helpful in realizing the true potential of these substances in photovoltaic and optoelectronic applications.

16.
Dalton Trans ; 44(46): 19966-73, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26524153

RESUMO

Two new subporphyrins were synthesized for the first time from a ß-substituted pyrrole i.e. 3,4-diethylpyrrole via pyridine-tri-N-(3,4-diethylpyrrolyl)borane as building blocks. These ß-hexaethylsubporphyrins are true contracted congeners of ß-octaethylporphyrin (OEP). While the meso-triphenyl derivative of hexaethylsubporphyrin could be synthesized by following the reported method, the meso-free analogue could only be synthesized by condensation with trioxane, in the presence of catalytic methanesulfonic acid. These contracted macrocycles display interesting absorption, and emission behaviour including substituent dependent S2 fluorescence owing to the presence of flexible electron donating ethyl groups at their ß-positions. The optical response and ultrafast S2 state dynamics of these systems suggest that it may be possible to tune the properties of the subporphyrin to develop efficient systems for solar energy capture and conversion processes.


Assuntos
Porfirinas/química , Alquilação , Boranos/síntese química , Boranos/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Modelos Moleculares , Porfirinas/síntese química , Piridinas/síntese química , Piridinas/química
17.
J Phys Chem B ; 117(17): 5156-64, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23544669

RESUMO

Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.


Assuntos
Líquidos Iônicos/química , Morfolinas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Antracenos/química , Hidrodinâmica , Mesilatos/química , Modelos Moleculares , Ftalimidas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA