Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 32(10): 101106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319273

RESUMO

This paper aims to study amplitude death in time delay coupled oscillators using the occasional coupling scheme that implies intermittent interaction among the oscillators. An enhancement of amplitude death regions (i.e., an increment of the width of the amplitude death regions along the control parameter axis) can be possible using the occasional coupling in a pair of delay-coupled oscillators. Our study starts with coupled limit cycle oscillators (Stuart-Landau) and coupled chaotic oscillators (Rössler). We further examine coupled horizontal Rijke tubes, a prototypical model of thermoacoustic systems. Oscillatory states are highly detrimental to thermoacoustic systems such as combustors. Consequently, a state of amplitude death is always preferred. We employ the on-off coupling (i.e., a square wave function), as an occasional coupling scheme, to these coupled oscillators. On monotonically varying the coupling strength (as a control parameter), we observe an enhancement of amplitude death regions using the occasional coupling scheme compared to the continuous coupling scheme. In order to study the contribution of the occasional coupling scheme, we perform a detailed linear stability analysis and analytically explain this enhancement of the amplitude death region for coupled limit cycle oscillators. We also adopt the frequency ratio of the oscillators and the time delay between the oscillators as the control parameters. Intriguingly, we obtain a similar enhancement of the amplitude death regions using the frequency ratio and time delay as the control parameters in the presence of the occasional coupling. Finally, we use a half-wave rectified sinusoidal wave function (motivated by practical reality) to introduce the occasional coupling in time delay coupled oscillators and get similar results.

2.
Chaos ; 32(6): 063105, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778125

RESUMO

Lean premixed combustors are highly susceptible to lean blowout flame instability, which can cause a fatal accident in aircrafts or expensive shutdown in stationary combustors. However, the lean blowout limit of a combustor may vary significantly depending on a number of variables that cannot be controlled in practical situations. Although a large literature exists on the lean blowout phenomena, a robust strategy for early lean blowout detection is still not available. To address this gap, we study a relatively unexplored route to lean blowout using a nonlinear dynamical tool, the recurrence network. Three recurrence network parameters: global efficiency, average degree centrality, and global clustering coefficient are chosen as metrics for an early prediction of the lean blowout. We observe that the characteristics of the time series near the lean blowout limit are highly dependent on the degree of premixedness in the combustor. Still, for different degrees of premixedness, each of the three recurrence network metrics increases during transition to lean blowout, indicating a shift toward periodicity. Thus, qualitatively, the recurrence network metrics show similar trends for different degrees of premixing showing their robustness. However, the sensitivities and absolute trends of the recurrence network metrics are found to be significantly different for highly premixed and partially premixed configurations. Thus, the results indicate that prior knowledge about (i) the degree of premixedness and (ii) the route to lean blowout may be required for accurate early prediction of the lean blowout. We show that the visible structural changes in the recurrence network can be linked to the changes in the recurrence network metrics, helping to better understand the dynamical transition to lean blowout. We observe the power law degree distribution of the recurrence network to break down close to the lean blowout limit due to the intermittent dynamics in the near-LBO regime.

3.
Chaos ; 32(7): 073114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907747

RESUMO

This study focuses on characterizing the bifurcation scenario and the underlying synchrony behavior in a nonlinear aeroelastic system under deterministic as well as stochastic inflow conditions. Wind tunnel experiments are carried out for a canonical pitch-plunge aeroelastic system subjected to dynamic stall conditions. The system is observed to undergo a subcritical Hopf bifurcation, giving way to large-amplitude limit cycle oscillations (LCOs) in the stall flutter regime under the deterministic flow conditions. At this condition, we observe intermittent phase synchronization between pitch and plunge modes near the fold point, whereas synchronization via phase trapping is observed near the Hopf point. Repeating the experiments under stochastic inflow conditions, we observe two different aeroelastic responses: low amplitude noise-induced random oscillations (NIROs) and high-amplitude random LCOs (RLCOs) during stall flutter. The present study shows asynchrony between pitch and plunge modes in the NIRO regime. At the onset of RLCOs, asynchrony persists even though the relative phase distribution changes. With further increase in the flow velocity, we observe intermittent phase synchronization in the flutter regime. To the best of the authors' knowledge, this is the first study reporting the experimental evidence of phase synchronization between pitch and plunge modes of an aeroelastic system, which is of great interest to the nonlinear dynamics community. Furthermore, given the ubiquitous presence of stall behavior and stochasticity in a variety of engineering systems, such as wind turbine blades, helicopter blades, and unmanned aerial vehicles, the present findings will be directly beneficial for the efficient design of futuristic aeroelastic systems.


Assuntos
Dinâmica não Linear
4.
Chaos ; 32(12): 123125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587326

RESUMO

A natural circulation system (NCS) has a broad application in the sector of thermal engineering, for example, in nuclear reactors due to its capability in transferring heat without any support of external power or a mechanical device. NCSs, although designed for steady operation, have been found to exhibit dynamical behavior, such as periodic oscillations, depending on the input heater power. The heater power, otherwise assumed to be steady, can be fluctuating in practice. The present study focuses on the dynamics of a single-phase square NCS, which exhibits periodic dynamics and is subjected to an external harmonic perturbation (chosen as the simplest form of fluctuation) over the steady heater power. The objective of the study is to study the dynamics of NCS under external (harmonic) disturbances using the framework of forced synchronization. Toward that, a 1D transient model of a square-shaped NCS is simulated with harmonically forced input power. The transition in the nature of synchronization between mass flux oscillations and the external forcing has been characterized by varying the frequency and amplitude of external perturbation independently. We find different nonlinear effects of the harmonic forcing, such as exhibition of quasiperiodic dynamics, frequency pulling/pushing, and frequency locking or forced synchronization. The aforementioned characterization techniques open up an avenue for detailed analysis of the more complex type of fluctuating input heat in real systems.

5.
Chaos ; 31(3): 033117, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810714

RESUMO

Inverse diffusion flame (IDF) is a reliable low NOx technology that is suitable for various industrial applications including gas turbines. However, a confined IDF may exhibit thermoacoustic instability, a kind of dynamic instability, which is characterized by catastrophically large amplitude pressure oscillations. Transition to such instability for an inverse diffusion flame is less explored compared to other types of flame. In the present study, thermoacoustic instability in a Rijke tube with IDF is achieved by varying air flow rate and input power independently, and the onset of thermoacoustic instability is examined using the framework of recurrence network (RN). During the transition to thermoacoustic instability, we find new routes and two new intermediate states, here referred to as "amplitude varying aperiodic oscillations" and "low amplitude limit cycle-like oscillations." Furthermore, we show that recurrence network analysis can be used to identify the dynamical states during the transition to thermoacoustic instability. We observe an absence of a single characteristic scale, resulting in a non-regular network even during thermoacoustic instability. Furthermore, the degree distributions of RN during combustion noise do not obey a single power law. Thus, scale-free nature is not exhibited during combustion noise. In short, recurrence network analysis shows significant differences in the topological information during combustion noise and thermoacoustic instability for IDF with those for premixed flames, reported earlier.

6.
Chaos ; 31(12): 123112, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34972339

RESUMO

Amplitude death (AD) has been recently identified as a phenomenon that can be exploited to stop unwanted large amplitude oscillations arising from instabilities in engineering systems. These oscillations are a consequence of the occurrence of dynamic instability, for example, the flutter instability, which results in the manifestation of sustained limit cycle oscillations. Recent studies have demonstrated amplitude death in coupled aeroelastic systems with identical parameters using suitable reactive coupling. Deriving impetus from the same, the dynamical signatures of coupled non-identical aeroelastic systems under a variety of coupling characteristics are investigated in the present study. The coupling characteristics between the individual airfoils here are assumed to possess both reactive and dissipative terms and are represented via a linear torsional spring and a damper, respectively. Explicit parameter mismatch is introduced via the use of different structural parameters such as frequency ratio and air-mass ratio for the individual airfoils. We demonstrate that a nonlinear coupled aeroelastic system with parameter mismatch and combined coupling characteristics gives rise to broader regimes of AD in aeroelastic systems. Specifically, the possibility of encountering large amplitude oscillations, usually found with pure reactive coupling can be avoided by adding a dissipative coupling term. On introducing dissipative coupling, the regime of AD was found to increase substantially, for both identical and non-identical scenarios, which in turn aids in serving as an effective tool to be developed further toward the application of flutter instability suppression.

7.
Phys Rev E ; 102(4-1): 042613, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212711

RESUMO

Effect of concurrent alignment and repulsion is studied in the purview of a confined active matter system using a modified force-based Vicsek model. On alteration of the alignment and the repulsive force parameters, a low alignment random phase, a midrange alignment milling phase, and a high alignment oscillatory phase are identified. Based on the particle aggregations, the milling phase is further classified into three subphases, two of which are spatial patterns: one consisting of compact ring-shaped mills and the other incorporating both rings and clusters. A correlation function based on the inner product of spatial velocity fluctuations of the particles shows a high correlation length for the ringed milling and the rings-clusters hybrid milling state. On analyzing temporal velocity fluctuations of particles through chaos detection techniques, low alignment and high alignment states are indicative of chaos, while the middle order alignment is symbolic of periodicity. The extent of synchronization of the particles' motion is analyzed through a Hilbert transform-based mean frequency approach, leading to the detection of a weak chimera state in the case of the spatial structures. The ringed milling state shows a unique category of weak chimera consisting of multiple oscillator groups showcasing different synchronization frequencies coexisting with desynchronized oscillators.

8.
Chaos ; 30(4): 043115, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32357653

RESUMO

Lean blowout (LBO) is a serious issue in modern gas turbine engines that operate in a lean (premixed) mode to follow the stringent emission norms. When an engine operates with a lean fuel-air mixture, the flame becomes unstable and is at times carried out of the combustion chamber by the unburnt flow. Thus, the sudden loss of the flame, known as lean blowout, leads to fatal accidents in aircrafts and loss of production in power plants. Therefore, an in-depth analysis of lean blowout is necessary as the phenomenon involves complex interactions between flow dynamics and chemical kinetics. For understanding the complex dynamics of this phenomenon, recurrence analysis can be a very useful method. In the current study, we observe a transition to LBO as the global fuel-air ratio is reduced from stoichiometric condition and perform recurrence quantification analysis (RQA) with the CH∗ chemiluminescence data obtained experimentally. The extent of fuel-air mixing is varied with an objective of developing some robust early predictors of LBO that would work over a wide range of premixing. We find some RQA measures, such as determinism, laminarity, and trapping time, which show distinctive signature toward LBO and thereby can be used as early predictors of LBO for both premixed and partially premixed flames. Our analysis shows that the computational time for laminarity and trapping time is relatively less. However, computational time for those measures depends upon the dynamics of the combustor, size of the data taken, and choice of recurrence threshold.

9.
Chaos ; 30(3): 033121, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32237762

RESUMO

Some physical systems with interacting chaotic subunits, when synchronized, exhibit a dynamical transition from chaos to limit cycle oscillations via intermittency such as during the onset of oscillatory instabilities that occur due to feedback between various subsystems in turbulent flows. We depict such a transition from chaos to limit cycle oscillations via intermittency when a grid of chaotic oscillators is coupled diffusively with a dissimilar chaotic oscillator. Toward this purpose, we demonstrate the occurrence of such a transition to limit cycle oscillations in a grid of locally coupled non-identical Rössler oscillators bidirectionally coupled with a chaotic Van der Pol oscillator. Further, we report the existence of symmetry breaking phenomena such as chimera states and solitary states during this transition from desynchronized chaos to synchronized periodicity. We also identify the temporal route for such a synchronization transition from desynchronized chaos to generalized synchronization via intermittent phase synchronization followed by chaotic synchronization and phase synchronization. Further, we report the loss of multifractality and loss of scale-free behavior in the time series of the chaotic Van der Pol oscillator and the mean field time series of the Rössler system. Such behavior has been observed during the onset of oscillatory instabilities in thermoacoustic, aeroelastic, and aeroacoustic systems. This model can be used to perform inexpensive numerical control experiments to suppress synchronization and thereby to mitigate unwanted oscillations in physical systems.

10.
Chaos ; 29(9): 093135, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575137

RESUMO

Oscillatory instabilities, although ubiquitous in nature, are undesirable in many situations such as biological systems, swaying of bridges and skyscrapers, aero-acoustic flutter, prey-predator and disease spread models, and thermoacoustic systems, where they exhibit large amplitude periodic oscillations. In the present study, we aim to study the suppression mechanism of such undesired oscillations in a pair of thermoacoustic oscillators, also known as horizontal Rijke tubes. These oscillators are coupled through a connecting tube whose length and diameter are varied as coupling parameters. With the variation of these parameters, we show the first experimental evidence of rich dynamical phenomena such as synchronization, amplitude death, and phase-flip bifurcation in coupled identical thermoacoustic oscillators. We discover that when frequency and amplitude mismatch are introduced between these oscillators, quenching of oscillations in one or both the oscillators occurs with further ease, through the mechanisms of amplitude death and partial amplitude death. Finally, we show that the effectiveness of coupling is sensitive to the dimensions of the connecting tube which can be directly correlated with the time delay and coupling strength of the system.

11.
Chaos ; 29(4): 043129, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042932

RESUMO

Interaction of fluid forces with flexible structures is often prone to dynamical instabilities, such as aeroelastic flutter. The onset of this instability is marked by sustained large amplitude oscillations and is detrimental to the structure's integrity. Therefore, investigating the possible physical mechanisms behind the onset of flutter instability has attracted considerable attention within the aeroelastic community. Recent studies have shown that in the presence of oncoming fluctuating flows, the onset of flutter instability is presaged by an intermediate regime of oscillations called intermittency. Further, based on the intensity of flow fluctuations and the relative time scales present in the flow, qualitatively different types of intermittency at different flow regimes have been reported hitherto. However, the coupled interaction between the pitch (torsion) and plunge (bending) modes during the transition to aeroelastic flutter has not been explored. With this, we demonstrate with a mathematical model that the onset of flutter instability under randomly fluctuating flows occurs via a mutual phase synchronization between the pitch and the plunge modes. We show that at very low values of mean flow speeds, the response is by and large noisy and, consequently, a phase asynchrony between the modes is present. Interestingly, during the regime of intermittency, we observe the coexistence of patches of synchronized periodic bursts interspersed amidst a state of desynchrony between the pitch and the plunge modes. On the other hand, at the onset of flutter, we observe a complete phase synchronization between the pitch and plunge modes. This study concludes by utilizing phase locking value as a quantitative measure to demarcate different states of synchronization in the aeroelastic response.

12.
Phys Rev E ; 100(6-1): 062204, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962431

RESUMO

Synchronization and chimera are examples of collective behavior observed in an ensemble of coupled nonlinear oscillators. Recent studies have focused on their discovery in systems with least possible number of oscillators. Here we present an experimental study revealing the synchronization route to weak chimera via quenching, clustering, and chimera states in a single system of four coupled candle-flame oscillators. We further report the discovery of multiphase weak chimera along with experimental evidence of the theoretically predicted states of in-phase chimera and antiphase chimera.

13.
Chaos ; 28(9): 093116, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278635

RESUMO

We present a systematic investigation of the effect of external noise on the dynamics of a system of two coupled prototypical thermoacoustic oscillators, horizontal Rijke tubes, using a mathematical model. We focus on the possibility of amplitude death (AD), which is observed in the deterministic model of coupled thermoacoustic oscillators as studied by Thomas et al. [Chaos 28, 033119 (2018)], in the presence of noise. Although a complete cessation of oscillations or AD is not possible in the stochastic case, we observe a significant reduction in the amplitude of coupled limit cycle oscillations (LCOs) with the application of strong coupling. Furthermore, as we increase the noise intensity, a sudden drop in the amplitude of pressure oscillations at the transition from LCO to AD, observed in the noise free case, is no longer discernible because of the amplification of noise in AD state. During this transition from LCO to AD, we notice a qualitative change in the distribution of the pressure amplitude from bimodal to unimodal. Furthermore, in order to demarcate the boundary of the transition from LCO and AD in the noisy case, we use 80 % suppression in the amplitude of LCO, which generally occurs in the parameter range over which this qualitative change in the pressure distribution happens, as a threshold. With the help of bifurcation diagrams, we show a qualitative change as well as a reduction in the size of amplitude suppression zones that happen due to the increase in noise intensity. We also observe the relative ease of suppressing the amplitude of LCO with time-delay coupling when detuning and dissipative couplings are introduced between the two thermoacoustic oscillators in the presence of noise.

14.
Chaos ; 28(3): 033119, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604646

RESUMO

We here systematically investigate amplitude death (AD) phenomenon in a thermoacoustic system using a mathematical model of coupled prototypical thermoacoustic oscillators, the horizontal Rijke tubes. AD has recently been identified as a relatively simple phenomenon, which can be exploited to stop the unwanted high amplitude pressure oscillations resulting from the occurrence of thermoacoustic instability. We examine the effect of time-delay and dissipative couplings on a system of two Rijke tubes when they are symmetrically and asymmetrically coupled. The regions where appropriate combinations of delay time, detuning, and the strengths of time-delay and dissipative coupling lead to AD are identified. The relative ease of attaining AD when both the couplings are applied simultaneously is inferred from the model. In the presence of strong enough coupling, AD is observed even when the oscillators of dissimilar amplitudes are coupled, while a significant reduction in the amplitudes of both the oscillators is observed when the coupling strength is not enough to attain AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA