Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
R Soc Open Sci ; 11(1): 231529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204792

RESUMO

Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.

3.
Int J Parasitol ; 53(10): 565-571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37164049

RESUMO

The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite's reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.


Assuntos
Varroidae , Abelhas , Animais , Reprodução , Fertilidade , Europa (Continente) , França
4.
PLoS One ; 18(2): e0282120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809298

RESUMO

Chemical communication is a widely used mode of communication for social insects and has been demonstrated to be involved in many behaviours and physiological processes such as reproduction, nutrition or the fight against parasites and pathogens. In the honey bee, Apis mellifera, the release of chemical compounds by the brood plays a role in worker behaviour, physiology, and foraging activities and colony health as a whole. Several compounds have already been described as brood pheromones, such as components of the brood ester pheromone and (E)-ß-ocimene. Several other compounds originating from diseased or varroa-infested brood cells have been described as triggering the hygienic behaviour of workers. So far, studies of brood emissions have focused on specific stages of development and little is known about the emission of volatile organic compounds by the brood. In this study, we investigate the semiochemical profile of worker honey bee brood during its whole developmental cycle, from egg to emergence, with a specific focus on volatile organic compounds. We describe variation in emissions of thirty-two volatile organic compounds between brood stages. We highlight candidate compounds that are particularly abundant in specific stages and discuss their potential biological significance.


Assuntos
Varroidae , Compostos Orgânicos Voláteis , Abelhas , Animais , Larva/fisiologia , Feromônios , Comportamento Animal , Varroidae/fisiologia
5.
Mol Ecol Resour ; 22(8): 3035-3048, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35816386

RESUMO

Eusocial insects are crucial to many ecosystems, and particularly the honeybee (Apis mellifera). One approach to facilitate their study in molecular genetics, is to consider whole-colony genotyping by combining DNA of multiple individuals in a single pool sequencing experiment. Cheap and fast, this technique comes with the drawback of producing data requiring dedicated methods to be fully exploited. Despite this limitation, pool sequencing data have been shown to be informative and cost-effective when working on random mating populations. Here, we present new statistical methods for exploiting pool sequencing of eusocial colonies in order to reconstruct the genotypes of the queen of such colony. This leverages the possibility to monitor genetic diversity, perform genomic-based studies or implement selective breeding. Using simulations and honeybee real data, we show that the new methods allow for a fast and accurate estimation of the queen's genetic ancestry, with correlations of about 0.9 to that obtained from individual genotyping. Also, it allows for an accurate reconstruction of the queen genotypes, with about 2% genotyping error. We further validate these inferences using experimental data on colonies with both pool sequencing and individual genotyping of drones. In brief, in this study we present statistical models to accurately estimate the genetic ancestry and reconstruct the genotypes of the queen from pool sequencing data from workers of an eusocial colony. Such information allows to exploit pool sequencing for traditional population genetics analyses, association studies and for selective breeding. While validated in Apis mellifera, these methods are applicable to other eusocial hymenopterans.


Assuntos
Ecossistema , Reprodução , Animais , Abelhas/genética , DNA/genética , Genótipo , Humanos , Insetos/genética
6.
Infect Genet Evol ; 103: 105340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853582

RESUMO

Invasive parasites are major threats to biodiversity. The honey bee ectoparasite, Varroa destructor, has shifted host and spread almost globally several decades ago. This pest is generally considered to be the main global threat to Western honey bees, Apis mellifera, although the damages it causes are not equivalent in all its new host's populations. Due to the high virulence of this parasite and the viruses it vectors, beekeepers generally rely on acaricide treatments to keep their colonies alive. However, some populations of A. mellifera can survive without anthropogenic mite control, through the expression of diverse resistance and tolerance traits. Such surviving colonies are currently found throughout the globe, with the biggest populations being found in Sub-Saharan Africa and Latin America. Recently, genetic differences between mite populations infesting surviving and treated A. mellifera colonies in Europe were found, suggesting that adaptations of honey bees drive mite evolution. Yet, the prevalence of such co-evolutionary adaptations in other invasive populations of V. destructor remain unknown. Using the previous data from Europe and novel genetic data from V. destructor populations in South America and Africa, we here investigated whether mites display signs of adaptations to different host populations of diverse origins and undergoing differing management. Our results show that, contrary to the differences previously documented in Europe, mites infesting treated and untreated honey bee populations in Africa and South America are genetically similar. However, strong levels of genetic differentiation were found when comparing mites across continents, suggesting ongoing allopatric speciation despite a recent spread from genetically homogenous lineages. This study provides novel insights into the co-evolution of V. destructor and A. mellifera, and confirms that these species are ideal to investigate coevolution in newly established host-parasite systems.


Assuntos
Acaricidas , Varroidae , África , Animais , Abelhas , Biodiversidade , Simpatria , Varroidae/genética
7.
Virol J ; 19(1): 12, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033134

RESUMO

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas , Vírus de DNA , Egito , Vírus de RNA/genética
8.
Pathogens ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070934

RESUMO

The parasitic Varroa destructor is considered a major pathogenic threat to honey bees and to beekeeping. Without regular treatment against this mite, honey bee colonies can collapse within a 2-3-year period in temperate climates. Beyond this dramatic scenario, Varroa induces reductions in colony performance, which can have significant economic impacts for beekeepers. Unfortunately, until now, it has not been possible to predict the summer Varroa population size from its initial load in early spring. Here, we present models that use the Varroa load observed in the spring to predict the Varroa load one or three months later by using easily and quickly measurable data: phoretic Varroa load and capped brood cell numbers. Built on 1030 commercial colonies located in three regions in the south of France and sampled over a three-year period, these predictive models are tools designed to help professional beekeepers' decision making regarding treatments against Varroa. Using these models, beekeepers will either be able to evaluate the risks and benefits of treating against Varroa or to anticipate the reduction in colony performance due to the mite during the beekeeping season.

9.
Sci Rep ; 11(1): 9133, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911144

RESUMO

Cell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite. Hence, cell recapping has been associated with colony-level declines in mite reproduction. In this study we compared the colony-level efficacy of cell recapping (how often infested cells are recapped) to the average mite fecundity in A. mellifera. Our study populations, known to be adapted to V. destructor, were from Avignon, France, Gotland, Sweden, and Oslo, Norway, and were compared to geographically similar, treated control colonies. The results show that colonies with a higher recapping efficacy also have a lower average mite reproductive success. This pattern was likely driven by the adapted populations as they had the largest proportion of highly-targeted cell recapping. The consistent presence of this trait in mite-resistant and mite-susceptible colonies with varying degrees of expression may make it a good proxy trait for selective breeding on a large scale.


Assuntos
Abelhas/parasitologia , Varroidae/crescimento & desenvolvimento , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Parasita , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Reprodução , Varroidae/fisiologia
10.
Nat Chem Biol ; 17(5): 524-530, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495646

RESUMO

Invasive species events related to globalization are increasing, resulting in parasitic outbreaks. Understanding of host defense mechanisms is needed to predict and mitigate against the consequences of parasite invasion. Using the honey bee Apis mellifera and the mite Varroa destructor, as a host-parasite model, we provide a comprehensive study of a mechanism of parasite detection that triggers a behavioral defense associated with social immunity. Six Varroa-parasitization-specific (VPS) compounds are identified that (1) trigger Varroa-sensitive hygiene (VSH, bees' key defense against Varroa sp.), (2) enable the selective recognition of a parasitized brood and (3) induce responses that mimic intrinsic VSH activity in bee colonies. We also show that individuals engaged in VSH exhibit a unique ability to discriminate VPS compounds from healthy brood signals. These findings enhance our understanding of a critical mechanism of host defense against parasites, and have the potential to apply the integration of pest management in the beekeeping sector.


Assuntos
Acetatos/isolamento & purificação , Abelhas/metabolismo , Comportamento Animal/fisiologia , Misturas Complexas/química , Cetonas/isolamento & purificação , Varroidae/química , Acetatos/química , Acetatos/farmacologia , Animais , Abelhas/citologia , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Comportamento Animal/efeitos dos fármacos , Bioensaio , Misturas Complexas/farmacologia , Feminino , Interações Hospedeiro-Parasita , Cetonas/química , Cetonas/farmacologia , Varroidae/patogenicidade
11.
Insects ; 11(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302465

RESUMO

Developing resistance to the varroa mite in honey bees is a major goal for apicultural science and practice, the development of selection strategies and the availability of resistant stock. Here we present an extended literature review and survey of resistant populations and selection programs in the EU and elsewhere, including expert interviews. We illustrate the practical experiences of scientists, beekeepers, and breeders in search of resistant bees. We describe numerous resistant populations surviving without acaricide treatments, most of which developed under natural infestation pressure. Their common characteristics: reduced brood development; limited mite population growth; and low mite reproduction, may cause conflict with the interests of commercial beekeeping. Since environmental factors affect varroa mite resistance, particular honey bee strains must be evaluated under different local conditions and colony management. The resistance traits of grooming, hygienic behavior and mite reproduction, together with simple testing of mite population development and colony survival, are significant in recent selection programs. Advanced breeding techniques and genetic and physiological selection tools will be essential in the future. Despite huge demand, there is no well-established market for resistant stock in Europe. Moreover, reliable experience or experimental evidence regarding the resistance of stocks under different environmental and management conditions is still lacking.

12.
Insects ; 11(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899430

RESUMO

In the fight against the Varroa destructor mite, selective breeding of honey bee (Apis mellifera L.) populations that are resistant to the parasitic mite stands as a sustainable solution. Selection initiatives indicate that using the suppressed mite reproduction (SMR) trait as a selection criterion is a suitable tool to breed such resistant bee populations. We conducted a large European experiment to evaluate the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee genotypes with their local mite parasites. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Simulation results indicate that it is necessary to examine at least 35 single-infested cells to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores indicating that this trait is present within the European honey bee populations. The trait is highly variable between colonies and some countries, but no major differences could be identified between countries for a given genotype, or between genotypes in different countries. This study shows the potential to increase selective breeding efforts of V. destructor resistant populations.

13.
Insects ; 11(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752279

RESUMO

In the current context of worldwide honey bee colony losses, among which the varroa mite plays a major role, the hope to improve honey bee health lies in part in the breeding of varroa resistant colonies. To do so, methods used to evaluate varroa resistance need better understanding. Repeatability and correlations between traits such as mite non-reproduction (MNR), varroa sensitive hygiene (VSH), and hygienic behavior are poorly known, due to practical limitations and to their underlying complexity. We investigate (i) the variability, (ii) the repeatability of the MNR score, and (iii) its correlation with other resistance traits. To reduce the inherent variability of MNR scores, we propose to apply an empirical Bayes correction. In the short-term (ten days), MNR had a modest repeatability of 0.4, whereas in the long-term (a month), it had a low repeatability of 0.2, similar to other resistance traits. Within our dataset, there was no correlation between MNR and VSH. Although MNR is amongst the most popular varroa resistance estimates in field studies, its underlying complex mechanism is not fully understood. Its lack of correlation with better described resistance traits and low repeatability suggest that MNR needs to be interpreted cautiously, especially when used for selection.

14.
Emerg Top Life Sci ; 4(1): 45-57, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32537655

RESUMO

Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host-parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.


Assuntos
Abelhas/fisiologia , Varroidae/metabolismo , Animais , Criação de Abelhas , Mel , Interações Hospedeiro-Parasita , Larva/metabolismo , Infestações por Ácaros/patologia , Infestações por Ácaros/prevenção & controle , Modelos Biológicos , Controle de Pragas , Estações do Ano
15.
Int J Parasitol ; 50(6-7): 433-447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32380096

RESUMO

The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Varroidae , Animais , Genômica , Interações Hospedeiro-Parasita , Fenótipo , Varroidae/patogenicidade
16.
Trends Parasitol ; 36(7): 592-606, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32456963

RESUMO

The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honey bee (Apis cerana), to the naïve European honey bee (Apis mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honey bee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. Highly infested weak colonies facilitate mite dispersal and disease transmission to stronger and healthier colonies. Here, we review recent developments in the biology, pathology, and management of varroa, and integrate older knowledge that is less well known.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Parasita , Varroidae/fisiologia , Acaricidas/farmacologia , Animais , Resistência a Medicamentos , Varroidae/efeitos dos fármacos , Varroidae/virologia
17.
J Invertebr Pathol ; 168: 107252, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31585118

RESUMO

Varroa destructor and its associated viruses, in particular deformed wing virus (DWV), have been identified as probable causes of honey bee (Apis mellif era L.) colony losses. Evidence suggests that elevated DWV titres in bees could compromise sensory and communication abilities resulting in negative consequences for hygienic behaviour. As antennae play a central role in this behaviour, we compared antennal ultrastructure in DWV-symptomatic and asymptomatic bees. The results show that virus capsids accumulate in the basal regions of the antennal epithelium, close to the haemolymph. No virus particles were detected at the level of sensory sensilla, such as pore plates, nor within the sensory cell dendrites associated with these sensilla. However, membranous structures appeared to be more prevalent in supporting cells surrounding the dendrites of DWV-symptomatic bees. Para-crystalline arrays containing large numbers of virus particles were detected in the antennae of DWV-symptomatic bees but not in asymptomatic bees.


Assuntos
Antenas de Artrópodes/virologia , Abelhas/virologia , Epitélio/virologia , Vírus de RNA/patogenicidade , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/patologia , Antenas de Artrópodes/ultraestrutura , Tomografia com Microscopia Eletrônica , Epitélio/patologia , Epitélio/ultraestrutura , Infecções por Vírus de RNA/diagnóstico , Varroidae/virologia
18.
Insects ; 10(9)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527402

RESUMO

The western honeybee Apis mellifera exhibits a diverse set of adaptations in response to infestations by its most virulent disease-causing agent, the ectoparasitic mite Varroa destructor. In this study, we investigated the effect of honeybee pupae genotype on the expression of four host and parasite traits that are associated with the reproductive phase of the mite in the brood of its host. We first phenotyped cells containing bee pupae to assess their infestation status, their infestation level, the reproductive status of the mites, and the recapping of cells by adult workers. We then genotyped individual pupae with five microsatellites markers to compare these phenotypes across full sister groups. We found that the four phenotypes varied significantly in time but did not across the subfamilies within the colonies. These findings show that V. destructor mites do not differentially infest or reproduce on some particular honeybee patrilines, and that workers do not target preferentially specific pupae genotypes when performing recapping. These findings bring new insights that can help designing sustainable mite control strategies through breeding and provide new insights into the interactions between A. mellifera and V. destructor.

19.
Sci Rep ; 9(1): 11355, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388048

RESUMO

The ectoparasitic mite, Varroa destructor, is the most severe biotic threat to honeybees (Apis mellifera) globally, usually causing colony death within a few years without treatments. While it is known that a few A. mellifera populations survive mite infestations by means of natural selection, the possible role of mite adaptations remains unclear. To investigate potential changes in mite populations in response to host adaptations, the genetic structure of V. destructor in the mite-resistant A. mellifera population on Gotland, Sweden, was studied. Spatio-temporal genetic changes were assessed by comparing mites collected in these colonies, as well as from neighboring mite-susceptible colonies, in historic (2009) and current (2017/2018) samples. The results show significant changes in the genetic structure of the mite populations during the time frame of this study. These changes were more pronounced in the V. destructor population infesting the mite-resistant honeybee colonies than in the mite-susceptible colonies. These results suggest that V. destructor populations are reciprocating, in a coevolutionary arms race, to the selection pressure induced by their honeybee host. Our data reveal exciting new insights into host-parasite interactions between A. mellifera and its major parasite.


Assuntos
Abelhas/parasitologia , Variação Genética , Interações Hospedeiro-Parasita , Varroidae/genética , Animais , Genética Populacional , Varroidae/fisiologia
20.
Sci Rep ; 8(1): 7704, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769608

RESUMO

In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.


Assuntos
Abelhas/fisiologia , Abelhas/parasitologia , Evolução Biológica , Interações Hospedeiro-Parasita/imunologia , Comportamento Social , Varroidae/patogenicidade , Animais , Abelhas/imunologia , Comportamento Animal , Feminino , Masculino , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA