Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281643

RESUMO

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Assuntos
Neoplasias Colorretais , Interferon-alfa , Animais , Camundongos , Células Endoteliais/patologia , Linfócitos T CD8-Positivos , Fígado , Hepatócitos , Neoplasias Colorretais/patologia
2.
EMBO Mol Med ; 8(2): 155-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769348

RESUMO

Colorectal cancer (CRC) metastatic dissemination to the liver is one of the most life-threatening malignancies in humans and represents the leading cause of CRC-related mortality. Herein, we adopted a gene transfer strategy into mouse hematopoietic stem/progenitor cells to generate immune-competent mice in which TEMs-a subset of Tie2(+) monocytes/macrophages found at peritumoral sites-express interferon-alpha (IFNα), a pleiotropic cytokine with anti-tumor effects. Utilizing this strategy in mouse models of CRC liver metastasis, we show that TEMs accumulate in the proximity of hepatic metastatic areas and that TEM-mediated delivery of IFNα inhibits tumor growth when administered prior to metastasis challenge as well as on established hepatic lesions, improving overall survival. Further analyses unveiled that local delivery of IFNα does not inhibit homing but limits the early phases of hepatic CRC cell expansion by acting on the radio-resistant hepatic microenvironment. TEM-mediated IFNα expression was not associated with systemic side effects, hematopoietic toxicity, or inability to respond to a virus challenge. Along with the notion that TEMs were detected in the proximity of CRC metastases in human livers, these results raise the possibility to employ similar gene/cell therapies as tumor site-specific drug-delivery strategies in patients with CRC.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias Colorretais/complicações , Terapia Genética/métodos , Interferon-alfa/metabolismo , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/terapia , Metástase Neoplásica/prevenção & controle , Animais , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Humanos , Camundongos , Metástase Neoplásica/terapia , Análise de Sobrevida
3.
J Cell Biochem ; 115(2): 368-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24030970

RESUMO

Cancer stem cells (CSC) have a central role in driving tumor growth. Since metabolism is becoming an important diagnostic and therapeutic target, characterization of CSC line energetic properties is an emerging need. Embryonic and adult stem cells, compared to differentiated cells, exhibit a reduced mitochondrial activity and a stronger dependence on aerobic glycolysis. Here, we aimed to comparatively analyze bioenergetics features of the human osteosarcoma 3AB-OS CSC-like line, and the parental osteosarcoma MG63 cells, from which 3AB-OS cells have been previously selected. Our results suggest that 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, growth in glucose shortage or in presence of galactose or pyruvate (mitochondrial specific substrates) leads to a significant reduction of their proliferation compared to MG63 cells. Accordingly, 3AB-OS cells show an increased expression of lactate dehydrogenase A (LDHA) and a larger accumulation of lactate in the culture medium. In line with these findings 3AB-OS cells as compared to MG63 cells present a reduced mitochondrial respiration, a stronger sensitivity to glucose depletion or glycolysis inhibition and a lessened sensitivity to oxidative phosphorylation inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display fragmented mitochondria, which become networked as they grow in glucose-rich medium, while almost entirely loose these structures growing in low glucose. Overall, our findings suggest that 3AB-OS CSC energy metabolism is more similar to normal stem cells and to cancer cells characterized by a glycolytic anaerobic metabolism.


Assuntos
Anaerobiose/genética , Metabolismo Energético , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neoplásicas/citologia , Osteossarcoma/patologia , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA