Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chem Commun (Camb) ; 59(35): 5205-5208, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042636

RESUMO

67 Zn solid-state NMR suffers from low sensitivity, limiting its ability to probe the Zn2+ surroundings in MOFs. We report a breakthrough in overcoming challenges in 67Zn NMR. Combining new cryogenic MAS probe technology and performing NMR experiments at a high magnetic field results in remarkable signal enhancement, yielding enhanced information for MOF characterization.

2.
Anal Chem ; 95(14): 5858-5866, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996326

RESUMO

Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF). DMF is a "lab on a chip" method allowing for the movement, mixing, splitting, and dispensing of µL-sized droplets. The goal is for DMF to supply oxygenated water to keep the organisms alive while NMR detects metabolomic changes. Here, both vertical and horizontal NMR coil configurations are compared. While a horizontal configuration is ideal for DMF, NMR performance was found to be sub-par and instead, a vertical-optimized single-sided stripline showed most promise. In this configuration, three organisms were monitored in vivo using 1H-13C 2D NMR. Without support from DMF droplet exchange, the organisms quickly showed signs of anoxic stress; however, with droplet exchange, this was completely suppressed. The results demonstrate that DMF can be used to maintain living organisms and holds potential for automated exposures in future. However, due to numerous limitations of vertically orientated DMF, along with space limitations in standard bore NMR spectrometers, we recommend future development be performed using a horizontal (MRI style) magnet which would eliminate practically all the drawbacks identified here.


Assuntos
Imageamento por Ressonância Magnética , Microfluídica , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Dispositivos Lab-On-A-Chip
3.
Chem Sci ; 13(9): 2591-2603, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35340864

RESUMO

We report synthesis and solid-state 17O NMR characterization of α-d-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-d-glucose/NaCl/H2O (2/1/1) cocrystals under static and magic-angle-spinning (MAS) conditions at five moderate, high, and ultrahigh magnetic fields: 14.1, 16.4, 18.8, 21.1, and 35.2 T. Complete 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were determined for each of the six oxygen-containing functional groups in α-d-glucose. Paramagnetic Cu(ii) doping was found to significantly shorten the spin-lattice relaxation times for both 1H and 17O nuclei in these compounds. A combination of the paramagnetic Cu(ii) doping, new CPMAS CryoProbe technology, and apodization weighted sampling led to a sensitivity boost for solid-state 17O NMR by a factor of 6-8, which made it possible to acquire high-quality 2D 17O multiple-quantum (MQ) MAS spectra for carbohydrate compounds. The unprecedented spectral resolution offered by 2D 17O MQMAS spectra permitted detection of a key structural difference for a single hydrogen bond between two types of crystallographically distinct α-d-glucose molecules. This work represents the first case where all oxygen-containing functional groups in a carbohydrate molecule are site-specifically 17O-labeled and fully characterized by solid-state 17O NMR. Gauge Including Projector Augmented Waves (GIPAW) DFT calculations were performed to aid 17O and 13C NMR signal assignments for a complex crystal structure where there are six crystallographically distinct α-d-glucose molecules in the asymmetric unit.

4.
J Phys Chem B ; 125(43): 11916-11926, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34694819

RESUMO

Solid-state 1H, 13C, and 15N nuclear magnetic resonance (NMR) spectroscopy has been an essential analytical method in studying complex molecules and biomolecules for decades. While oxygen-17 (17O) NMR is an ideal and robust candidate to study hydrogen bonding within secondary and tertiary protein structures for example, it continues to elude many. We discuss an improved multiple-turnover labeling procedure to develop a fast and cost-effective method to 17O label fluoroenylmethyloxycarbonyl (Fmoc)-protected amino acid building blocks. This approach allows for inexpensive ($0.25 USD/mg) insertion of 17O labels, an important barrier to overcome for future biomolecular studies. The 17O NMR results of these building blocks and a site-specific strategy for labeled N-acetyl-MLF-OH and N-formyl-MLF-OH tripeptides are presented. We showcase growth in NMR development for maximizing sensitivity gains using emerging sensitivity enhancement techniques including population transfer, high-field dynamic nuclear polarization, and cross-polarization magic-angle spinning cryoprobes.


Assuntos
Aminoácidos , Proteínas , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
5.
Anal Chem ; 93(29): 10326-10333, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34259008

RESUMO

Comprehensive multiphase (CMP) NMR, first described in 2012, combines all of the hardware components necessary to analyze all phases (solid, gel, and solution) in samples in their natural state. In combination with spectral editing experiments, it can fully differentiate phases and study the transfer of chemical species across and between phases, providing unprecedented molecular-level information in unaltered natural systems. However, many natural samples, such as swollen soils, plants, and small organisms, contain water, salts, and ionic compounds, making them electrically lossy and susceptible to RF heating, especially when using high-strength RF fields required to select the solid domains. While dedicated reduced-heating probes have been developed for solid-state NMR, to date, all CMP-NMR probes have been based on solenoid designs, which can lead to problematic sample heating. Here, a new prototype CMP probe was developed, incorporating a loop gap resonator (LGR) for decoupling. Temperature increases are monitored in salt solutions analogous to those in small aquatic organisms and then tested in vivo on Hyalella azteca (freshwater shrimp). In the standard CMP probe (solenoid), 80% of organisms died within 4 h under high-power decoupling, while in the LGR design, all organisms survived the entire test period of 12 h. The LGR design reduced heating by a factor of ∼3, which allowed 100 kHz decoupling to be applied to salty samples with generally ≤10 °C sample heating. In addition to expanding the potential for in vivo research, the ability to apply uncompromised high-power decoupling could be beneficial for multiphase samples containing true crystalline solids that require the strongest possible decoupling fields for optimal detection.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Ondas de Rádio
6.
Analyst ; 146(14): 4461-4472, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34136891

RESUMO

Comprehensive multiphase NMR combines the ability to study and differentiate all phases (solids, gels, and liquids) using a single NMR probe. The general goal of CMP-NMR is to study intact environmental and biological samples to better understand conformation, organization, association, and transfer between and across phases/interfaces that may be lost with conventional sample preparation such as drying or solubilization. To date, all CMP-NMR studies have used 4 mm probes and rotors. Here, a larger 7 mm probehead is introduced which provides ∼3 times the volume and ∼2.4 times the signal over a 4 mm version. This offers two main advantages: (1) the additional biomass reduces experiment time, making 13C detection at natural abundance more feasible; (2) it allows the analysis of larger samples that cannot fit within a 4 mm rotor. Chicken heart tissue and Hyalella azteca (freshwater shrimp) are used to demonstrate that phase-based spectral editing works with 7 mm rotors and that the additional biomass from the larger volumes allows detection with 13C at natural abundance. Additionally, a whole pomegranate seed berry (aril) and an intact softgel capsule of hydroxyzine hydrochloride are used to demonstrate the analysis of samples too large to fit inside a conventional 4 mm CMP probe. The 7 mm version introduced here extends the range of applications and sample types that can be studied and is recommended when 4 mm CMP probes cannot provide adequate signal-to-noise (S/N), or intact samples are simply too big for 4 mm rotors.


Assuntos
Imageamento por Ressonância Magnética , Biomassa , Espectroscopia de Ressonância Magnética
7.
J Biomol NMR ; 73(1-2): 31-42, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30600417

RESUMO

In vivo Nuclear Magnetic Resonance (NMR) spectroscopy has great potential to interpret the biochemical response of organisms to their environment, thus making it an essential tool in understanding toxic mechanisms. However, magnetic susceptibility distortions lead to 1D NMR spectra of living organisms with lines that are too broad to identify and quantify metabolites, necessitating the use of 2D 1H-13C Heteronuclear Single Quantum Coherence (HSQC) as a primary tool. While quantitative 2D HSQC is well established, to our knowledge it has yet to be applied in vivo. This study represents a simple pilot study that compares two of the most popular quantitative 2D HSQC approaches to determine if quantitative results can be directly obtained in vivo in isotopically enriched Daphnia magna (water flea). The results show the perfect-HSQC experiment performs very well in vivo, but the decoupling scheme used is critical for accurate quantitation. An improved decoupling approach derived using optimal control theory is presented here that improves the accuracy of metabolite concentrations that can be extracted in vivo down to micromolar concentrations. When combined with 2D Electronic Reference To access In vivo Concentrations (ERETIC) protocols, the protocol allows for the direct extraction of in vivo metabolite concentrations without the use of internal standards that can be detrimental to living organisms. Extracting absolute metabolic concentrations in vivo is an important first step and should, for example, be important for the parameterization as well as the validation of metabolic flux models in the future.


Assuntos
Isótopos de Carbono , Espectroscopia de Ressonância Magnética/métodos , Animais , Daphnia , Espectroscopia de Ressonância Magnética/instrumentação , Metabolômica/métodos , Projetos Piloto
8.
Chem Commun (Camb) ; 54(16): 2000-2003, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29411841

RESUMO

Proton magic-angle-spinning NMR used for real-time analysis of amyloid aggregation reveals that mechanical rotation of Aß1-40 monomers increases the rate of formation of aggregates, and that the increasing lag-time with peptide concentration suggests the formation of growth-incompetent species. EGCG's ability to shift off-pathway aggregation is also demonstrated.

9.
Environ Sci Technol ; 50(4): 1670-80, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26783947

RESUMO

Since the isolation of soil organic matter in 1786, tens of thousands of publications have searched for its structure. Nuclear magnetic resonance (NMR) spectroscopy has played a critical role in defining soil organic matter but traditional approaches remove key information such as the distribution of components at the soil-water interface and conformational information. Here a novel form of NMR with capabilities to study all physical phases termed Comprehensive Multiphase NMR, is applied to analyze soil in its natural swollen-state. The key structural components in soil organic matter are identified to be largely composed of macromolecular inputs from degrading biomass. Polar lipid heads and carbohydrates dominate the soil-water interface while lignin and microbes are arranged in a more hydrophobic interior. Lignin domains cannot be penetrated by aqueous solvents even at extreme pH indicating they are the most hydrophobic environment in soil and are ideal for sequestering hydrophobic contaminants. Here, for the first time, a complete range of physical states of a whole soil can be studied. This provides a more detailed understanding of soil organic matter at the molecular level itself key to develop the most efficient soil remediation and agricultural techniques, and better predict carbon sequestration and climate change.


Assuntos
Biomassa , Solo/química , Água , Agricultura/métodos , Carboidratos , Interações Hidrofóbicas e Hidrofílicas , Lignina/análise , Lipídeos , Espectroscopia de Ressonância Magnética/métodos
10.
Chem Sci ; 7(8): 4856-4866, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155133

RESUMO

Comprehensive multiphase (CMP) NMR is a novel technology that integrates all the hardware from solution-, gel- and solid-state into a single NMR probe, permitting all phases to be studied in intact samples. Here comprehensive multiphase (CMP) NMR is used to study all components in a living organism for the first time. This work describes 4 new scientific accomplishments summarized as: (1) CMP-NMR is applied to a living animal, (2) an effective method to deliver oxygen to the organisms is described which permits longer studies essential for in-depth NMR analysis in general, (3) a range of spectral editing approaches are applied to fully differentiate the various phases solutions (metabolites) through to solids (shell) (4) 13C isotopic labelling and multidimensional NMR are combined to provide detailed assignment of metabolites and structural components in vivo. While not explicitly studied here the multiphase capabilities of the technique offer future possibilities to study kinetic transfer between phases (e.g. nutrient assimilation, contaminant sequestration), molecular binding at interfaces (e.g. drug or contaminant binding) and bonding across and between phases (e.g. muscle to bone) in vivo. Future work will need to focus on decreasing the spinning speed to reduce organism stress during analysis.

11.
Environ Sci Technol ; 49(24): 13983-91, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26579583

RESUMO

Comprehensive multiphase NMR is a novel NMR technique that permits all components (solutions, gels, and solids) to be studied in unaltered natural samples. In this study a wide range of CMP-NMR interaction and editing-based experiments are combined to follow contaminants (pentafluorophenol (PFP) and perfluorooctanoic acid (PFOA)) from the solution state (after a spill) through the gel-state and finally into the true solid-state (sequestered) in an intact water-swollen soil. Kinetics experiments monitoring each phase illustrate PFOA rapidly transfers from solution to the solid phase while for PFP the process is slower with longer residence times in the solution and gel phase. Interaction-based experiments reveal that PFOA enters the soil via its hydrophobic tails and selectively binds to soil microbial protein. PFP sorption shows less specificity exhibiting interactions with a range of gel and solid soil components with a preference toward aromatics (mainly lignin). The results indicate that in addition to more traditional measurements such as Koc, other factors including the influence of the contaminant on the soil-water interface, specific biological interactions, soil composition (content of lignin, protein, etc.) and physical accessibility/swellability of soil organic components will likely be central to better explaining and predicting the true behavior of contaminants in soil.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Poluentes do Solo/análise , Poluentes do Solo/química , Caprilatos/análise , Caprilatos/química , Flúor/análise , Fluorbenzenos/análise , Fluorbenzenos/química , Fluorocarbonos/análise , Fluorocarbonos/química , Géis , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lignina/química , Fenóis/análise , Fenóis/química , Solo/química , Microbiologia do Solo , Água/química
12.
Sci Rep ; 5: 11811, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138908

RESUMO

Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-ß (Aß). The aggregation of Aß leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aß oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aß1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aß1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-ß-sheet fibrils.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Amiloide/química , Ressonância Magnética Nuclear Biomolecular , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Humanos , Substâncias Macromoleculares/química , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica
13.
Magn Reson Chem ; 53(9): 735-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25855560

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Genes de Plantas , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Plântula/metabolismo , Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Deleção de Genes , Glutamina/análise , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Metanol/análise , Metanol/metabolismo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Fenilalanina/análise , Fenilalanina/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Amido/análise , Amido/metabolismo , Água/análise , Água/metabolismo
14.
J Agric Food Chem ; 62(1): 107-15, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24354469

RESUMO

Seeds are complex entities composed of liquids, gels, and solids. NMR spectroscopy is a powerful tool for studying molecular structure but has evolved into two fields, solution and solid state. Comprehensive multiphase (CMP) NMR spectroscopy is capable of liquid-, gel-, and solid-state experiments for studying intact samples where all organic components are studied and differentiated in situ. Herein, intact (13)C-labeled seeds were studied by a variety of 1D/2D (1)H/(13)C experiments. In the mobile phase, an assortment of metabolites in a single (13)C-labeled wheat seed were identified; the gel phase was dominated by triacylglycerides; the semisolid phase was composed largely of carbohydrate biopolymers, and the solid phase was greatly influenced by starchy endosperm signals. Subsequently, the seeds were compared and relative similarities and differences between seed types discussed. This study represents the first application of CMP-NMR to food chemistry and demonstrates its general utility and feasibility for studying intact heterogeneous samples.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sementes/química , Brassica/química , Isótopos de Carbono , Glicerídeos/química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética/instrumentação , Triticum/química , Zea mays/química
15.
Magn Reson Chem ; 51(3): 129-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322645

RESUMO

A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.


Assuntos
Muramidase/química , Ressonância Magnética Nuclear Biomolecular/métodos , Compostos Orgânicos/química , Polímeros/química , Reutilização de Equipamento , Muramidase/metabolismo , Fatores de Tempo
16.
Environ Toxicol Chem ; 32(1): 129-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23065696

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is an essential tool for studying environmental samples but is often hindered by low sensitivity, especially for the direct detection of nuclei such as(13) C. In very heterogeneous samples with NMR nuclei at low abundance, such as soils, sediments, and air particulates, it can take days to acquire a conventional(13) C spectrum. The present study describes a prescreening method that permits the rapid prediction of experimental run time in natural samples. The approach focuses the NMR chemical shift dispersion into a single spike, and, even in samples with extremely low carbon content, the spike can be observed in two to three minutes, or less. The intensity of the spike is directly proportional to the total concentration of nuclei of interest in the sample. Consequently, the spike intensity can be used as a powerful prescreening method that answers two key questions: (1) Will this sample produce a conventional NMR spectrum? (2) How much instrument time is required to record a spectrum with a specific signal-to-noise (S/N) ratio? The approach identifies samples to avoid (or pretreat) and permits additional NMR experiments to be performed on samples producing high-quality NMR data. Applications in solid- and liquid-state(13) C NMR are demonstrated, and it is shown that the technique is applicable to a range of nuclei.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Espectroscopia de Ressonância Magnética , Poluentes do Solo/análise , Monitoramento Ambiental/instrumentação , Sedimentos Geológicos/análise , Modelos Químicos , Solo
17.
Environ Sci Technol ; 46(19): 10508-13, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22946434

RESUMO

The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.


Assuntos
Compostos de Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Solo/química , Albuminas/química , Albuminas/metabolismo , Sítios de Ligação , Caprilatos/química , Caprilatos/metabolismo , Compostos de Flúor/análise , Compostos de Flúor/metabolismo , Radioisótopos de Flúor , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Substâncias Húmicas/análise , Lignina/química , Lignina/metabolismo
18.
J Magn Reson ; 217: 61-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22425441

RESUMO

Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.


Assuntos
Misturas Complexas/análise , Misturas Complexas/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Transição de Fase , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA