Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Cardiovasc Imaging ; 16(10): e014863, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847766

RESUMO

BACKGROUND: Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability. METHODS: We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging. RESULTS: Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21-1.71] versus Q1, 1.64 [1.53-1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18-1.70]; P=0.02). Myocardial triglyceride content levels were overall higher in all the quartiles with a significant increase seen across the AV pressure gradient quartiles (Q2, 1.36 [0.86-1.98] versus Q1, 1.03 [0.81-1.56]; P=0.034). While all AS groups had evidence of subclinical LV dysfunction with impaired strain parameters, impaired systolic longitudinal strain was related to the degree of energetic impairment (r=0.219; P=0.03). Phosphocreatine/adenosine triphosphate was not only an independent predictor of LV wall thickness (r=-0.20; P=0.04) but also strongly associated with myocardial fibrosis (r=-0.24; P=0.03), suggesting that metabolic changes play a role in disease progression. The metabolic and functional parameters showed comparable results when graded by clinical severity of AS. CONCLUSIONS: A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression.


Assuntos
Estenose da Valva Aórtica , Cardiomiopatias , Humanos , Fosfocreatina/metabolismo , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/complicações , Trifosfato de Adenosina/metabolismo , Cardiomiopatias/complicações , Fibrose , Fenótipo , Progressão da Doença , Função Ventricular Esquerda
2.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37070436

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Estudos Prospectivos , Dobutamina/farmacologia , Metabolismo Energético , Trifosfato de Adenosina
3.
JACC Cardiovasc Imaging ; 15(12): 2112-2126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36481080

RESUMO

Pressure overload in aortic stenosis (AS) encompasses both structural and metabolic remodeling and increases the risk of decompensation into heart failure. A major component of metabolic derangement in AS is abnormal cardiac substrate use, with down-regulation of fatty acid oxidation, increased reliance on glucose metabolism, and subsequent myocardial lipid accumulation. These changes are associated with energetic and functional cardiac impairment in AS and can be assessed with the use of cardiac magnetic resonance spectroscopy (MRS). Proton MRS allows the assessment of myocardial triglyceride content and creatine concentration. Phosphorous MRS allows noninvasive in vivo quantification of the phosphocreatine-to-adenosine triphosphate ratio, a measure of cardiac energy status that is reduced in patients with severe AS. This review summarizes the changes to cardiac substrate and high-energy phosphorous metabolism and how they affect cardiac function in AS. The authors focus on the role of MRS to assess these metabolic changes, and potentially guide future (cellular) metabolic therapy in AS.


Assuntos
Estenose da Valva Aórtica , Humanos , Valor Preditivo dos Testes , Estenose da Valva Aórtica/diagnóstico por imagem , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA