Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Radiol Artif Intell ; 6(3): e230227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477659

RESUMO

The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcoming these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing diagnostic accuracy and patient outcomes. Keywords: Use of AI in Education, Artificial Intelligence © RSNA, 2024.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Diagnóstico por Imagem/métodos , Sociedades Médicas , América do Norte
4.
J Am Coll Radiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354844

RESUMO

Despite the surge in artificial intelligence (AI) development for health care applications, particularly for medical imaging applications, there has been limited adoption of such AI tools into clinical practice. During a 1-day workshop in November 2022, co-organized by the ACR and the RSNA, participants outlined experiences and problems with implementing AI in clinical practice, defined the needs of various stakeholders in the AI ecosystem, and elicited potential solutions and strategies related to the safety, effectiveness, reliability, and transparency of AI algorithms. Participants included radiologists from academic and community radiology practices, informatics leaders responsible for AI implementation, regulatory agency employees, and specialty society representatives. The major themes that emerged fell into two categories: (1) AI product development and (2) implementation of AI-based applications in clinical practice. In particular, participants highlighted key aspects of AI product development to include clear clinical task definitions; well-curated data from diverse geographic, economic, and health care settings; standards and mechanisms to monitor model reliability; and transparency regarding model performance, both in controlled and real-world settings. For implementation, participants emphasized the need for strong institutional governance; systematic evaluation, selection, and validation methods conducted by local teams; seamless integration into the clinical workflow; performance monitoring and support by local teams; performance monitoring by external entities; and alignment of incentives through credentialing and reimbursement. Participants predicted that clinical implementation of AI in radiology will continue to be limited until the safety, effectiveness, reliability, and transparency of such tools are more fully addressed.

5.
Can Assoc Radiol J ; 75(2): 226-244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251882

RESUMO

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever­growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi­society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.


Assuntos
Inteligência Artificial , Radiologia , Sociedades Médicas , Humanos , Canadá , Europa (Continente) , Nova Zelândia , Estados Unidos , Austrália
6.
J Med Imaging Radiat Oncol ; 68(1): 7-26, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38259140

RESUMO

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Canadá , Sociedades Médicas , Europa (Continente)
7.
Radiol Artif Intell ; 6(1): e230513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38251899

RESUMO

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. This article is simultaneously published in Insights into Imaging (DOI 10.1186/s13244-023-01541-3), Journal of Medical Imaging and Radiation Oncology (DOI 10.1111/1754-9485.13612), Canadian Association of Radiologists Journal (DOI 10.1177/08465371231222229), Journal of the American College of Radiology (DOI 10.1016/j.jacr.2023.12.005), and Radiology: Artificial Intelligence (DOI 10.1148/ryai.230513). Keywords: Artificial Intelligence, Radiology, Automation, Machine Learning Published under a CC BY 4.0 license. ©The Author(s) 2024. Editor's Note: The RSNA Board of Directors has endorsed this article. It has not undergone review or editing by this journal.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Canadá , Radiografia , Automação
8.
J Am Coll Radiol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38276923

RESUMO

Artificial intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. KEY POINTS.

9.
Insights Imaging ; 15(1): 16, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246898

RESUMO

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones.This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.Key points • The incorporation of artificial intelligence (AI) in radiological practice demands increased monitoring of its utility and safety.• Cooperation between developers, clinicians, and regulators will allow all involved to address ethical issues and monitor AI performance.• AI can fulfil its promise to advance patient well-being if all steps from development to integration in healthcare are rigorously evaluated.

10.
Radiol Artif Intell ; 5(5): e230235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37795136
12.
ArXiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37608932

RESUMO

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

13.
ArXiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608937

RESUMO

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

16.
J Am Med Inform Assoc ; 30(3): 545-550, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36519951

RESUMO

Electronic health records (EHRs) offer decision support in the form of alerts, which are often though not always interruptive. These alerts, though sometimes effective, can come at the cost of high cognitive burden and workflow disruption. Less well studied is the design of the EHR itself-the ordering provider's "choice architecture"-which "nudges" users toward alternatives, sometimes unintentionally toward waste and misuse, but ideally intentionally toward better practice. We studied 3 different workflows at our institution where the existing choice architecture was potentially nudging providers toward erroneous decisions, waste, and misuse in the form of inappropriate laboratory work, incorrectly specified computerized tomographic imaging, and excessive benzodiazepine dosing for imaging-related sedation. We changed the architecture to nudge providers toward better practice and found that the 3 nudges were successful to varying degrees in reducing erroneous decision-making and mitigating waste and misuse.


Assuntos
Registros Eletrônicos de Saúde , Fluxo de Trabalho
17.
Abdom Radiol (NY) ; 48(2): 758-764, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371471

RESUMO

PURPOSE: To create an algorithm able to accurately detect IVC filters on radiographs without human assistance, capable of being used to screen radiographs to identify patients needing IVC filter retrieval. METHODS: A primary dataset of 5225 images, 30% of which included IVC filters, was assembled and annotated. 85% of the data was used to train a Cascade R-CNN (Region Based Convolutional Neural Network) object detection network incorporating a pre-trained ResNet-50 backbone. The remaining 15% of the data, independently annotated by three radiologists, was used as a test set to assess performance. The algorithm was also assessed on an independently constructed 1424-image dataset, drawn from a different institution than the primary dataset. RESULTS: On the primary test set, the algorithm achieved a sensitivity of 96.2% (95% CI 92.7-98.1%) and a specificity of 98.9% (95% CI 97.4-99.5%). Results were similar on the external test set: sensitivity 97.9% (95% CI 96.2-98.9%), specificity 99.6 (95% CI 98.9-99.9%). CONCLUSION: Fully automated detection of IVC filters on radiographs with high sensitivity and excellent specificity required for an automated screening system can be achieved using object detection neural networks. Further work will develop a system for identifying patients for IVC filter retrieval based on this algorithm.


Assuntos
Filtros de Veia Cava , Humanos , Estudos Retrospectivos , Radiografia , Redes Neurais de Computação , Algoritmos
18.
Radiology ; 306(3): e213199, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36378030

RESUMO

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non-fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3-15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73-0.86; P < .001) without significant differences (mean differences, -0.8 to 0.8 mm; P = .36-.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Retrospectivos , Mama/diagnóstico por imagem , Mama/patologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
19.
Radiol Artif Intell ; 4(6): e220058, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523646

RESUMO

Supplemental material is available for this article. Keywords: Informatics, MR Diffusion Tensor Imaging, MR Perfusion, MR Imaging, Neuro-Oncology, CNS, Brain/Brain Stem, Oncology, Radiogenomics, Radiology-Pathology Integration © RSNA, 2022.

20.
Am J Emerg Med ; 60: 164-170, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986979

RESUMO

INTRODUCTION: Previously, we found that the use of ultrasonography for patients with suspected nephrolithiasis resulted in similar outcomes and less radiation exposure vs. CT scan. In this study, we evaluated the implementation of an ultrasound-first clinical decision support (CDS) tool in patients with suspected nephrolithiasis. METHODS: This randomized trial was conducted at an academic emergency department (ED). We implemented the ultrasound-first CDS tool, deployed when an ED provider placed a CT order for suspected nephrolithiasis. Providers were randomized to receiving the CDS tool vs. usual care. The primary outcome was receipt of CT during the index ED visit. Secondary outcomes included radiation dose and ED revisit. RESULTS: 64 ED Providers and 254 patients with suspected nephrolithiasis were enrolled from January 2019 through Dec 2020. The US-First CDS tool was deployed for 128 patients and was not deployed for 126 patients. 86.7% of patients in the CDS arm received a CT vs. 94.4% in the usual care arm, resulting in an absolute risk difference of -7.7% (-14.8 to -0.6%). Mean radiation dose in the CDS arm was 6.8 mSv (95% CI 5.7-7.9 mSv) vs. 6.1 mSv (95% CI 5.1-7.1 mSv) in the usual care arm. The CDS arm did not result in increased ED revisits, CT scans, or hospitalizations at 7 or 30 days. CONCLUSIONS AND RELEVANCE: Implementation of the US-first CDS tool resulted in lower CT use for ED patients with suspected nephrolithiasis. The use of this decision support may improve the evaluation of a common problem in the ED. TRIAL REGISTRATION: ClinicalTrials.gov#NCT03461536.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Cálculos Renais , Serviço Hospitalar de Emergência , Humanos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA